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ABSTRACT: Wulff constructions are a powerful tool to predict the shape of
nanoparticles, which strongly influences their performance in catalysis, sensing, and
surface-enhanced spectroscopies. Previous Wulff models focused on energy
minimization and included contributions from the surface energy, interface energy,
twin boundaries, and segregation-induced bulk energy changes. However, a large number
of shapes cannot be understood by such thermodynamic approaches, in particular many
of the twinned late transition metal (Ag, Au, Pt, Pd, etc.) particles of interest in catalysis
and plasmonics. A review of the modified Wulff (i.e., twinned) construction is presented here, followed by the development of a
modified kinetic Wulff model, which, by including kinetic parameters, explains the emergence of commonly observed shapes such
as bitetrahedra, truncated bitetrahedra, thin triangular platelets, perfect decahedra, and decahedral rods.

■ INTRODUCTION

The shape, surface, and internal structure of nanoparticles are
topics of continuing interest due to their use in a range of both
current and future technologies, ranging from catalysis to
plasmonic and biomedical applications, in addition to the
continuing importance of buried nanoparticles (precipitates)
within materials leading to improved properties. While the last
decades have seen substantial strides in synthetic methods
aimed at making nanoparticles of a desired shape in high yields,
understanding of the growth details has lagged behind the
synthesis in many respects. It is often unclear whether a
particular shape/structure is produced because of the
thermodynamics or kinetics of growth, and what quantitatively
rather than qualitatively are the effects of factors such as
solution concentration, surfactants, and surface chemisorbed
species.
Thermodynamic modeling of the shape of single crystals is

over a century old: in 1873, Gibbs1−3 first proposed that the
lowest energy shape of a droplet is determined by a surface
energy minimization. Based upon the initial observations of
Wulff4 about solids, this evolved into the so-called “Wulff
construction” which states that the normal vector length to any
external face is proportional to the surface free energy. The first
formal proof of this was given by von Laue,5 generalized to
curved surfaces by Dinghas,6 with Herring7 giving some
important further analysis. An extension for supported particles
on a flat substrate was described by Winterbottom,8 extended
to an edge by Zia et al. in what they called the SummerTop
construction.9 A more recent addition has been for alloy
nanoparticles.10

However, not all nanoparticles are single crystals. Since the
seminal work of Ino and Ogawa11−13 and the later work of
Allpress and Sanders,14 it has been known that nanoparticles of

gold, silver, and other face-centered cubic (fcc) metals can have
rather unusual structures. Dark field electron microscopy
studies11−13 showed that icosahedral (Ic) and decahedral
(Dh) structures existed, which were called multiply twinned
particles (MTPs). Regular single crystals (such as tetrahedra)
and particles with one or more parallel twin boundaries
(laminar twinned particles or LTPs) were also observed. The
MTPs could be described as assemblies of tetrahedral subunits,
elastically strained by ∼2% for the Dh and ∼6% for the Ic to
form space-filling structures. This interpretation was confirmed
using lattice imaging15 and later by atomic resolution
imaging.16,17 For completeness, we note that there are many
other complicated shapes such as what were called “poly-
particles” which are either polyicosahedral structures similar to
those first analyzed by Hoare and Pal,18 or partially coalesced
particles.
The initial energetics study13 of particle shape used a

homogeneous strain model coupled with a surface energy
analysis of the regular structures to show that the Ic particles
were stable at small sizes. However, no adequate explanation
was found for the stability of the Dh or other experimentally
observed structures such as octahedra and tetrahedra. Later, the
surface structure of the particles was generalized using a variant
of the Wulff construction appropriate for twinned nano-
particles, called a modified Wulff construction.19,20 Finally, by
coupling the modified Wulff shapes with a disclination strain
model for the Dh particles21 and a three-dimensional variant for
the Ic particles,22 the existence of the Dh particles up to
intermediate sizes was rationalized. Some strain relief

Received: February 13, 2013
Revised: April 18, 2013

Feature Article

pubs.acs.org/JPCC

© XXXX American Chemical Society A dx.doi.org/10.1021/jp401566m | J. Phys. Chem. C XXXX, XXX, XXX−XXX

pubs.acs.org/JPCC


mechanisms, which have generally been confirmed over the
years, were also suggested.23

As a general formulation, which will be returned to later in a
different form, the thermodynamic stability of MTPs can be
considered in terms of the weighted surface energy of the two
regions R1 and R2 of the standard stereographic triangle for an
fcc material, as illustrated in Figure 1. In this triangle, R1 and R2

are the projections of the regions selected by the presence (or
absence) of twin planes, such that different twinning patterns
result in different ratios of such regions: single crystals have an
equal number of R1 and R2 (48R1 and 48R2), decahedral MTPs
have more R1 (60R1 and 40R2), and icosahedral MTPs have
only R1 (120). As the relative integrated surface energy of R1
versus R2 is dependent on the stability of {111} faces (as well as
other facets), lower {111} surface free energy (versus {100}),
such as in the presence of relevant chemisorbed species, is a
sufficient condition for MTPs to be stable at small sizes. At
larger sizes, as first pointed out by Ino, they cannot be
thermodynamically stable because of the additional strain
energy.21,22

Atomistic calculations have confirmed the stability of Ic and
Dh particles, and specifically the modified Wulff solution which
leads to a decahedron with re-entrant surfaces at the twin
boundary,24−26 probably the only known case of a thermody-
namic minimum-energy shape which is nonconvex. The
structure with just {111} and {100} facets has become
known as the Marks decahedron.27 Technically, this is only
one specific case of the modified Wulff solution: star decahedra
and short pentagonal rods are also solutions obeying the
thermodynamic criteria of the preceding paragraph or the
corresponding kinetic condition, as will be discussed later.
How these MTPs were formed was an early question; for

instance, Allpress and Sanders14 suggested assemblage of
tetrahedral units in their original work. Whether the particles
were frozen variants of 1−2 nm seeds which just grew larger or
could change shape to follow the thermodynamic path of
lowest energy was unclear. Yagi et al.28 demonstrated through
in situ experiments that such shape changes could occur, later
confirmed by Iijima and Ichihashi.29 While there were initially
some questions as to the role of electron-beam heating or core
excitations in the experiments, a more general explanation by
Ajayan et al.30−33 indicated that the activation energy for
transformations between structures was relatively modest,
similar to the energy landscape model for much smaller
clusters developed by Berry and co-workers.34−36 Ajayan et al.31

also speculated that there should be a size−temperature phase
diagram for nanoparticles.
Much of the early work has been reviewed37 with earlier

work on more diverse nanoparticles (called at that time “small
particles” or “ultrafine particles”) available in the argon-smokes
literature.38 More recent reviews are also available.27,39 Given
the growth of nanotechnology in the last decades, significant
advances in synthesis and characterization methods have been
made, for example, the discovery of new shape-control
strategies,40,41 attempts to measure nanoparticle phase
maps,30,32,42,43 as well as more precise structural character-
ization using aberration corrected TEM or X-ray methods.
Modeling advances have accompanied experimental progress,
for example, better elasticity models44,45 and atomistic methods
exploiting DFT.42 However, no general models for the effects
of growth kinetics on shape are currently available, and many
recent papers have presented results that could benefit from
theoretical shape modeling, both kinetic and thermodynamic.
This paper has three main parts. The first is a rigorous

background on the foundation of the thermodynamic and
kinetic Wulff construction. Then, a short review of the modified
Wulff construction is presented, with examples of contempo-
rary twinned structures (such as star decahedra) experimentally
observed but not previously modeled. The limitations of this
thermodynamic model, in particular its inability to explain
many commonly synthesized structures, will be discussed.
The third part presents a new kinetic model inspired by the

modified Wulff construction and the kinetic Wulff construc-
tion.46−49 The latter dates back to the early work of Frank46

and in various forms has been used for continuum single crystal
growth.50−52 In the current modified kinetic Wulff model,
growth-assisting defects such as re-entrant surfaces and
disclinations/twin boundaries are mathematically taken into
account and discussed. This new model gives quasi-stationary
solutions for most if not all the structures not explained by the
thermodynamic models as well as shapes commonly found for
fcc nanoparticles. This approach works equally well for gas and
liquid phase growth; simple implementation (graphical user
interface available in the Supporting Information) and fast
computation time make it a useful tool to predict shapes for
large (>5 nm) particles, where atomistic methods (DFT, for
instance) are limited by computing power. While no explicit
solutions for other crystallographies are presented, these can be
generated without difficulty.
The paper concludes with an overview of the model

limitation and possible expansions, as well as a brief discussion
of shape instabilities and transformations.

■ METHODS
All the calculations necessary to produce geometrical models
presented herein (Figures 3−5) were performed in MATLAB
by calculating a growth front value (using the growth velocities
and enhancements described in eqs 18 and 19) at each point in
a square three-dimensional mesh, and then producing an
isosurface linking all points with the same value. A detailed
explanation of the code and the code itself are provided in the
Supporting Information. A graphical user interface was
developed to model nanoparticle shape; it includes both single
crystal and modified Wulff constructions, thermodynamic and
kinetic. The user interface as well as associated documentation
is provided as Supporting Information. The parameters used for
Figures 3−5 are reported in Table S1 and S2 of the Supporting
Information. Particles shown in Figure 6 were the product of

Figure 1. The two sections of the stereographic triangle associated
with the relative thermodynamics as well as kinetics of MTPs, as
discussed in the text.
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the reduction of hydrogen tetrachloroaurate (HAuCl4) in a
polyol synthesis in the presence of PVP (poly(vinyl
pyrrolidone)).53−55

■ THERMODYNAMIC AND KINETIC WULFF
CONSTRUCTIONS

In this first part, the transition from atomistic to continuum
description of matter will be sketched, as the kinetic and
thermodynamic Wulff constructions are limits of this transition.
We will also clarify the important distinction between kinetic
and thermodynamic modeling, as well as discuss previous
approaches. While many of the components are available in the
literature, some generalizations are useful particularly in order
to connect to ab initio thermodynamics (e.g., refs 56 and 57).
In a purely atomistic description, the total energy of an

ordered, crystalline nanoparticle can be written as

∑ ∑ ∑= + + + + ···E a n n n b n n c n d
i j k

ijk i j k
i j

ij i j
i

i i
, , , (1)

where the ni are positive integers that represent the number of
atoms along particular directions. In principle, the equation can
be extended to include terms with inverse powers, but this is
rarely useful. Assuming convex shapes for all single crystal
regions and replacing eq 1 with a vector of normal distances for
each face from a common origin h̲ = (h1, h2, ..., hk) for k facets,
with all hi real but not necessarily positive numbers, leads to

∑ ∑ ∑= + + + + ···E A h h h B h h C h D
i j k

ijk i j k
i j

ij i j
i

i i
, , , (2)

As illustrated in Figure 2, each hi is a combination of a
geometric distance such as that from the origin to the

outermost plane of atoms plus a “Gibbs distance” outside the
surface; this is needed to properly achieve the transition from
atomistic to continuum models.24,58 Moreover, to obtain the
correct limit with infinite size, the first term on the right must
be such that the relevant energy terms scale linearly with the
volume and also number of atoms. This is chosen here as the
def inition of the Gibb’s cut used for each hi, which in general
leads to a nonlinear relationship between these and the number
of atoms along specific directions. The continuum shape is then
defined by the set of planes normal to all hi, and all continuum

quantities are defined via the appropriate partial derivatives or
integrals taking care to include nonlinearity. We note that for
most purposes the errors involved in the use of the equimolar
cut will be small enough that the more general nonlinear forms
can be avoided.
With this formulation, energy terms O(h3) are the bulk

cohesive energy and strain energy terms, those of O(h2), the
total surface free energy and surface stress terms (e.g., strain in
MTPs), those of O(h), the edge terms as well as counting
corrections, and those of O(h0), the corner terms as well as
additional counting corrections (e.g., to ensure the correct limit
for a single atom). Note that this form automatically goes to the
correct limit at large sizes and also (in principle if the Taylor
series is expanded with terms O(h−n)) at small sizes; both limits
need to be attained properly for the model to be valid. It is,
however, crucial to understand the relative importance of the
different terms when comparing nanoparticles with the same
number of atoms, which generally follows Δ surface energy ≈
Δ strain energy > Δ surface stress energy in MTPs > Δ twin
boundary energy ≈ Δ lattice parameter ≈ Δ counting
corrections. For the purposes of this paper, we will ignore
terms beyond O(h3) and O(h2), i.e., ignore the deviations at
very small sizes (<2 nm). In the absence of tractions on the
external surface of a nanoparticle (e.g., pressure), the O(h3)
term contains the bulk cohesive energy as well as the energy
associated with strain fields (which are critical for MTPs), i.e.,

∑ μ= +
⎛
⎝⎜

⎞
⎠⎟A h h h V

v
W

i j k
ijk i j k

, ,

B

0
D

(3)

where V is the volume, μB, the bulk chemical potential, ν0 the
volume per atom, and WD the strain energy density. We note
that, in pressure-free systems, the total strain energy only
depends upon the total volume. While energy models excluding
the strain energy have been suggested,42,59 these go to a
physically incorrect limit at large sizes and are therefore
necessarily incorrect. Additional terms can be added for
pressure contributions, but these are small and cancel when
different structures are compared.
The second term on the right of eq 2 can be written as

∑ γ ε ε= + ⟨ ⟩B h h V g e( )
i j

ij i j ij ij
,

2/3
111 w g

(4)

which contains the conventional surface free energy (γ) as well
as that of twin boundaries in V2/3γ111εw and the coupling
between internal strains for MTPs and the surface free energy
in V2/3⟨gijeij⟩εg, analyzed conventionally via the derivative of the
surface free energy with respect to the in-plane strains in the
surface gij = dγ/deij,

19,20,60 also called the surface stress tensor.
In general, the difference in the total surface free energy
between different nanoparticle shapes is much larger than the
twin-boundary contributions; hence, the latter can be neglected
for most fcc metals (typical twin boundary energies are no
more than a few percent of surface free energies). Rigorously,
the twin-boundary energies couple with the surface free
energies in determining the final shape (e.g., refs 19 and 20),
but this effect is small and can be neglected in most practical
cases. Note that care needs to be taken with the definition of
the reference states, as conventional elasticity theory uses the
initial volume rather than a moving frame of reference.
To obtain the total energy, the volume and surface terms

(eqs 3 and 4) are substituted in eq 2:

Figure 2. Equimolar surface partitioning based upon the Wigner−Seitz
unit cells shown in red.
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where the rightmost term includes any remaining corrections
due to counting effects as well as edge and corner energies. For
very small clusters (<2 nm), these may be important; otherwise,
they can be safely neglected. In the absence of any strain terms,
the minimum energy shape at constant volume is the variational
minimum of εw (equivalently, the total energy at constant
volume), and for a single crystal is given by the thermodynamic
Wulff construction as the shape (set of points) Sw given by61,62

λγ= ̂ ≤ ̂ ̂S x x n n n{ : . ( ) for all unit vectors }w (6)

The shape obtained thus contains all points x within n ̂ ≤ λγ(n ̂),
where n ̂ is a unit vector defined by the crystallographic
orientation of a face ({hkl}), γ(n ̂) is the orientation-dependent
surface free energy, and λ is a constant that accounts for
volume. Another common way to express this relationship is
through the definition of the envelope planes of the particle, as
first proved by Von Laue5 and Dinghas:6

λγ=hi i (7)

where hi is the normal distance from the center of the particle
to a crystallographic facet i ({hkl}) as defined earlier, γi is the
orientation-dependent surface free energy of the facet, and λ is
defined as before. If the surface free energy is isotropic, the
strain terms can become important, but for the faceted particles
of interest herein, the coupling is a small third-order effect and
will not be discussed further.
However, the thermodynamic shape will only be achieved if

there is both time and energy available for bulk and/or surface
diffusion processes to occur; this is rarely the case particularly
for solution growth. Growth kinetics must thus be considered.
An additional term can be defined, called the “weighted mean
curvature” (wmc), the ratio of the change in surface energy (Es)
for a given facet (including surface stress contributions) and the
change in volume (V):63

δ δ

μ

= Δ + Δ +

=
δ→h E h h V h h

h v

wmc( ) lim ( )/ ( )

( )/
i i i i i

i

0 s
s

0 (8)

where μs(hi) is the effective chemical potential associated with a
given facet i as a function of hi and v0 is the atomic volume.
Note that if four or more facets meet at a corner involving facet
i some care is needed to distinguish limits for ±δ due to the
derivative discontinuity. For the thermodynamic Wulff shape,
the weighted mean curvature is a constant for all hi, an
alternative description of equilibrium. It is worth mentioning
that for faceted nanoparticles the weighted mean curvature is
piecewise continuous and from solid geometry will scale with hi
as approximately

γ= ̅ −h L hwmc( ) /( )i i i i (9)

where the facet disappears for hi ≥ Li and eqs 8 and 9 define a
weighted mean surface energy γi̅. Note that this indicates that
sharp corners are energetically unfeasible, rationalizing the fact
that most experimental particles show at least some rounding.
In addition, since MTPs also contain strains with the strain

energy density implicitly a functional of the shape, in principle,
a fully rigorous description would include a term

δ δ

μ

= Δ + Δ +

=
δ→w h W h h V h h

h v

( ) lim ( )/ ( )

( )/
i i i i i

i

0 D
w

0 (10)

To date, there is no evidence that this shape-dependent
strain energy contribution to the chemical potential matters for
solution growth, although it is known to be important in
epitaxial growth (e.g., refs 64−66). Neglecting this term, the
differential equations for growth in the limit of no diffusion (of
atoms within the particle) can then be written as a function of
the chemical potential difference:

μ μ μ μ= + + −
h t

t
v h t h t t

d ( )
d

( ( ( )) ( ( )) ( ))i
i i i

s w B Ext
(11)

where μExt(t) is the relevant external chemical potential,
assumed to be isotropic but not constant with time t. For
simplicity, the bulk chemical potential is assumed to be time-
invariant and local concentration gradients in the vicinity of the
nanoparticle are neglected. In the special case when the growth
velocity depends either weakly or linearly upon the chemical
potential difference, a steady-state or Lyapunov solution exists
for a single crystal as the shape SK given by

λ ν= ̂ ≤ ̂ ̂S x x n t n n{ : . ( ) ( ) for all unit vectors }K (12)

i.e., the shape corresponds to the inner envelope of planes
normal to

λ=h t t v( ) ( )i i (13)

This is called the “kinetic Wulff construction”, and is
deceptively similar to the Wulff construction with the critical
difference that growth velocities (v) rather than the surface free
energies (γ) determine the shape. In some cases, the shapes
may be very similar, but there is no reason that they should be.
For instance, the growth velocity in the presence of surfactants
involves a number of kinetic processes such as activation energy
barriers for atoms adding to the nanoparticle to diffuse through
surfactant layers, as well as those for transition states where the
surfactant is partially desorbed from the surface; in the
thermodynamic case, the surface free energies only depend
upon the ground state, equilibrium energies.
The thermodynamic and kinetic Wulff constructions

represent the limits of very fast and very slow exchange of
atoms between different surfaces, respectively. Since the
exchange of atoms between different surfaces depends upon
the difference in the weighted mean curvature, in the presence
of some exchange of atoms between different faces, an
approximate solution will be

λ ζ λ η γ≈ + ≈ + ̅h t t v t h t v t( ) ( ) ( )wmc( ) ( ) ( )i i i i i (14)

where the vector of weighted mean curvatures and weighted
surface free energies have been defined similar to before, and
ζ(t) and η(t) are scalar functions of time.
Both the thermodynamic and kinetic Wulff shapes have been

extensively studied for single crystals, e.g., refs 7, 47−49, 61, 62,
and 67−78. In some cases, softwares are available to calculate
these shapes, for instance, for an isolated nanoparticle or one at
an internal interface.79,80 When the set of surface free energies
in eq 4 is expanded to include an interface term, one arrives at
the thermodynamic Winterbottom construction;8 two inter-
faces yield the thermodynamic SummerTop construction.9 For
twin boundaries or by extension, other boundaries, the
modified Wulff construction19,20 can be used, with the addition
that there is now a vector hi for each single crystal subunit, and
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that the scale term λ can be different for each subunit. Several
analyses of growth on substrates assumed the growth velocity of
the interface to be zero, e.g., refs 76−78, effectively using a
kinetic Winterbottom construction. In the next sections, we will
specifically discuss the kinetic version of the modified Wulff
construction, including the important additional effects due to
enhanced growth as a consequence of crystallographic defects.
First, however, the results for the thermodynamic modified
Wulff shape will be presented as a brief introduction to its
kinetic variant.

■ THE MODIFIED WULFF CONSTRUCTION
To generate the shapes for twinned particles, the modified
Wulff construction can be written as the superset of Wulff
shapes Sm for all the individual single crystal subunits as follows

λ γ= − ̂ ≤ ̂ ̂S x x o n n n{ : ( ). ( ) for all unit vectors }m m m m
(15)

where om is the origin for each single-crystal unit and γm(n̂) is
the surface free energy appropriately oriented in space, which
includes a “twin facet” energy of αmnγt for each segment “m”
adjacent to a segment “n”, with the additional conditions

α α= + =S S and 1mn mn mn nm
t t

(16)

where Smn
t is the bounding twin surface of segment “m” where it

joins to segment “n”. Geometrically, this can be written as the
following sequence of steps:

(1) Construct a Wulff polyhedron as per the standard Wulff
construction for each single crystal subunit “m”, including
the twin boundaries as facets of free energy per unit area
αmnγt, where γt is the twin boundary energy per unit area.

(2) Find the values of αmn and the related segments such that
the twin facet has identical geometry for adjacent units
and the total twin-boundary energy is correctly counted.

(3) Assemble the segments to form a space-filling structure.

From the properties of the Wulff construction, for specified
values of αmn and λm, this is the global minimum total surface
energy shape. With respect to variation in αmn and λm, it may be
a constrained local minimum in order to satisfy Smn

t = Snm
t or a

saddle point.
The simplest case is with αmn = 1/2 and all λm the same, i.e.,

the symmetric solution. One twin plane gives a singly twinned
particle, while combining segments with parallel twin
boundaries gives a family of LTPs, first observed in argon
smokes.38 Using five segments each bounded by two
nonparallel planes gives a Dh; 20 segments bounded by three
nonparallel boundaries, an Ic. Note that this leads to a family of
structures defined by the number of twinned segments, not by
the external surface. For instance, a regular icosahedron is
obtained if only {111} and {100} facets are present; more
complicated yet related structures arise if the {110} facets are of
low energy.
By symmetry, it is simple to show that an equal partition is a

stationary solution with respect to variation in αmn and λm.
Numerical calculations for a Dh yield a minimum for only
{111} and {100} faceting,33 although it is a saddle point for an
isotropic surface free energy.19,20 There is currently no
analytical theory describing for what values of the surface free
energy anisotropy the construction is a minimum versus a
saddle point. Asymmetric partitioning of the twin boundary
(αmn ≠ 1/2) is also possible, in which case the scaling term λm

for each segment is different. This leads to some of the
asymmetric nanoparticle structures observed experimentally.19

For completeness, with clean surfaces, the twin-boundary
energy is small compared to the surface free energies so it can
be taken as zero (to first order approximation) for the
geometric shape, in which case the origins om are common and
this term can be removed. This approximation is accurate to
second order in the energy,19,20 and the difference in the shape
will be below experimental error for vacuum or argon smoke
experiments. From solid geometry, the total surface energy can
be written (ignoring the twin boundary contribution) in terms
of the parameter εw used in eq 4 as

ε
γ

= +
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥N S N S

9
{ }w

111
1 1 2 2

1/3

(17)

where S1 and S2 are the integrated total surface free energies of
the two regions R1 and R2 of the stereographic triangle in
Figure 1 and N1 and N2, the numbers of each as mentioned
previously.
For solvent-based growth, the surface free energies may be

substantially lower, such that in some cases the coupling cannot
be ignored and leads to re-entrant surfaces at the disclination
line, as sometimes observed experimentally81 and outlined in
previous publications.19,20

As an example of how the modified Wulff construction can
be used in a general fashion, consider a Dh with only {111} and
{100} facets. If we assume that the surface energies are similar
to those of a broken bond model82 with γ111/γ100 = √3/2
(inputs of eq 15), one gets the Marks decahedron with re-
entrant surfaces at the twin boundaries (Figure 3a) as drawn in

the original publications.19,20 If the free energy of the {100}
facets is decreased such that γ111/γ100 > 2/√3, which can occur
in the presence of stabilizing molecules such as surfactant (in
the liquid phase) or chemisorbed species (in the gas phase),
these notches disappear and the particle elongates to a rod-like
shape similar to that first investigated by Ino11−13 (Figure 3b).

Figure 3. Thermodynamic Dh shape as a function of the relative
surface free energy of {100} and {111} facets. (a) Re-entrant surfaces
are obtained when the energy assumed is that of the broken bond
model (γ111/γ100 = √3/2). (b) Elongated decahedron/pentagonal rod
without notches, obtained by lowering the {100} surface energy to
γ111/γ100 = 2/√3. (c) Star decahedron obtained by destabilizing the
{100} facets (γ111/γ100 = 1/4).
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If instead the {100} energy is increased and becomes much
larger than the {111} energy (γ111/γ100 ≪ 1), the {100} facets
no longer appear in the minimal energy shape, and the result is
a star decahedron (Figure 3c), similar to those recently
synthesized by the Xia group.83 Addition of {110} facets will
lead to more rounded structures, as will inclusion of other
higher index facets if these are of low enough surface free
energy. Note that all these structures are related and all will
contain a wedge disclination and/or strain-relieving disloca-
tions; they only differ in which surfaces are of lowest energy.
While they may have different properties, we argue that they
should all be considered as members of a class of nanoparticles,
not as different entities.
There are many more shapes that can be understood from

the modified Wulff construction, for instance, variants of an Ic
when {110} surfaces are low energy; these are simple to analyze
and thus are not detailed here. While the modified Wulff
construction has proved to be successful in rationalizing some
observations, most notably for the Dh with re-entrant surface in
the thermodynamically lowest energy shape, it does not explain
everything. Perhaps the simplest shortcoming is a regular
decahedron with only {111} facets. While these were described
in the original papers on MTPs,11−13 no thermodynamic
argument will give their shape as a minimum energy
configurationthat they are a minimum energy shape is a
common misconception. Other shapes cannot be explained,
such as sharp bipyramids, which have been synthesized using
various protocols,84−86 as well as truncated bitetrahedra,
triangular platelets, and Dh rods. In many papers, these have
been loosely attributed to “kinetics”; we now turn to put this on
a firmer foundation.

■ THE KINETIC MODIFIED WULFF CONSTRUCTION

As introduced earlier, the shape when kinetics dominate may be
related but is generally different from the thermodynamic
shape; it depends upon the growth kinetics of different facets as
well as the weighted mean curvature. Since the thermodynamic
shapes when twin boundaries are present are no longer convex,
the weighted mean curvature for the equilibrium shape no
longer depends just upon the facet crystallography but depends
upon whether the facet intersects the grain boundary or not. In
addition, the re-entrant or concave surfaces that can exist are
favorable attachment sites. All such factors need to be taken
into account in order to model the kinetic shape of twinned
nanoparticles.
The “kinetic modified Wulff construction” can be defined as

the superset of the shapes for each segment of

λ ν= ̂ ≤ ̂ ̂S x x n t n n{ : . ( ) ( ) for all unit vectors }m m (18)

where the growth velocity of the twin boundaries has been
taken as zero (assuming negligible bulk diffusion), a case which
automatically satisfies the additional conditions of eq 14 as well
as the different origins. Geometrically, this is equivalent to the
following series of steps:

(1) Construct a kinetic Wulff polyhedron as per the standard
kinetic Wulff construction but now using growth
velocities and taking into account the enhanced growth
for concave surfaces and facets adjacent to twin
boundaries or other defects such as the disclination line
in a Dh.

(2) Extract the appropriate volume for each segment
bounded by twin boundaries, treating these as external
facets of zero growth velocity.

(3) Assemble the segments to form a space-filling structure.

Specific forms for the enhancement will depend upon the
precise experimental conditions and the type of shape
considered. Here, such effects are parametrized via an
enhancement of νm(n ̂), more explicitly by multiplying it by 1
+ φ(n̂) for the relevant facets, where re-entrant surface, twin,
and disclination enhancement contribute to φ(n ̂), i.e.,

φ φ φ φ̂ = ̂ + ̂ + ̂‐n n n n( ) ( ) ( ) ( )re entrant twin disclination (19)

For a re-entrant surface, only the faces that form the notch
({111}-type for Dh; {100}-type for LTP) are enhanced. Twin-
enhanced growth involves enhancing any facet adjacent to the
twin boundary, for example, both {111} and re-entrant {100}
in a LTP. Lastly, disclination-assisted growth involves facets
adjacent to the central disclinations in a Dh, i.e., the 10 {111}
facets present in a perfect Dh. Note that disclination assisted
growth for an Ic is also possible but in general will not give
anything more than a regular Ic so will not be discussed further
here. These terms were used to compute the kinetic Wulff
shapes presented in this paper; more details are given in the
Supporting Information.
An interesting example of kinetic growth is that of a Dh; as

previously mentioned, the thermodynamic growth model fails
to predict the sharp particles observed experimentally. The
kinetic model succeeds, however. Indeed, if the growth rate of
{100} facets is fast and there is enhanced growth at the re-
entrant surfaces, a sharp, slightly elongated decahedron is
formed (Figure 4b) instead of the thermodynamic Marks

decahedron (Figure 4a). If, in addition to re-entrant growth
enhancement, the {111} facet growth is slowed down (due to
surfactants, for example), sharp pentagonal bipyramids are
formed, similar to that commonly obtained experimentally
(Figure 4c).53,87−89 With enhanced re-entrant and disclination
growth, rods are formed (Figure 4d) and depending upon
which faces grow fast and slow there will be a range of end
results, which is consistent with the many different reports in
the literature.87−97 Note that, similar to the thermodynamic

Figure 4. Effect of kinetic growth on Dh nanoparticles. All figures
except part c have identical vhkl parameters equivalent to γ111/γ100 =
√3/2. A Marks decahedron (a) becomes a sharp Ino-like decahedron
when re-entrant surface growth enhancement occurs (φr > 0, b), a
pentagonal bipyramid when re-entrant growth and {111} surface
stabilization occur (φr > 0, v111/v100 = 7/12, c), and a perfect
pentagonal rod when both kinetic enhancements occur (φd > 0, φr > 0,
d).
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shapes, these are not fundamentally different particles, just
different yet related shapes one can obtain by varying the
kinetics.
A second example is a LTP with a single twin, also referred to

as a monotwin. Depending upon the conditions, a plethora of
related shapes can be obtained, as illustrated in Figures 5 and 6.

The structures in Figure 5b−e cannot be modeled with the
thermodynamic Wulff construction. The thermodynamic shape
for a monotwin with low {100} surface free energy (Figure 5a)
becomes a sharp bipyramid (Figure 5b) when modeled with
fast {111} growth (slow {100} growth, equivalent to low {100}
surface free energy) and enhanced growth at the re-entrant
surfaces. When modeled with fast {100} growth (slow {111}
growth), a flat hexagon, truncated bitetrahedron, or flat
triangular platelet can be obtained depending upon whether
the enhancement is applied at the twin plane, the re-entrant
surface, or both, respectively (Figure 5c−e).
Experimentally, sharp Ag bipyramids (Figure 5b) have been

obtained in both PVP (poly(vinyl pyrrolidone)), a {100}-
stabilizing surfactant39,86,98,99 for Ag, and BSPP (bis-(p-
sulfonatophenyl)phenylphosphine), a surfactant without strong

preferential stabilization,85,100,101 confirming the importance of
kinetic control in this reaction.
The {111}-dominated monotwin particles modeled with the

kinetic modified Wulff construction have also been widely
observed in reaction products. Thick triangular structures, i.e.,
truncated bitetrahedra (Figure 5d), are produced under weak
kinetic control and modeled with only a small enhancement at
re-entrant surfaces, as is the case for perfect Dh (pentagonal
bipyramids, Figure 4b). In fact, truncated bitetrahedra and
perfect Dh are abundantly obtained with the same experimental
growth conditions.55,87 Interestingly, such synthesis also yields
icosahedra and hexagonal plates. We show a representative
image of a collection of PVP-capped nanoparticles containing
various types of twins in Figure 6; PVP has been shown
repea t ed l y to y i e ld {111} - t e rm ina ted Au pa r -
ticles39,54,87,89,99,102−104 (unless Ag underpotential deposition
is also present39,54,102−105). As discussed earlier, Ic emerge from
seeds with 20 twin segments. The origin of hexagonal plates is
not as straightforward, however. In our model, we can obtain
this structure with fast {100} growth and enhanced twin growth
(Figure 5e), meaning that all faces adjacent to the twin plane
are growing equally fast. Following Lofton and Sigmund’s
framework for understanding re-entrant surfaces in thin
plates,106 this isotropy can occur in a particle with an even
number of parallel twin planes; see also the earlier work on
Argon smokes38 for a larger database of simple twins and more
crystallographies. Finally, thin triangular platelets (Figure 5c)
have been known and studied for over a decade,40,106−115 and
kinetic control has been invoked repeatedly to explain their
formation and fast degradation; in our model, strong kinetic
enhancement (both at the twin and re-entrant surfaces) is
indeed needed to obtain this shape.

■ DISCUSSION
The modified Wulff construction has been successful in
explaining the thermodynamic shapes of fcc nanoparticles,
and can without problem be used for other crystallographies.
The modified kinetic Wulff construction provides a novel and
useful framework for understanding particle shape, applicable to
both liquid and gas phase growth as it holds whenever the
particles do not change shape and surface diffusion or exchange
through a solvent is slow compared to growth (as in most
practical synthesis conditions). The agreement with experi-
ments is excellent even at the simple level of parametrization of
the surface growth rates of different surfaces with the important
addition of additional enhancement terms for re-entrant
surfaces and defects. In particular, this new model explains
the presence of perfect Dh into the micrometer size regime in
which they cannot be rationalized by thermodynamics, except
for special cases such as when the constituent units are larger
entities such as nanoparticles.116

The modified kinetic Wulff solution is different for each type
of nanoparticles, for instance, monotwins versus MTPs. It
follows that the relative rate of growth of different nanoparticle
shapes will not be the same. Similar to the breakdown of the
thermodynamics in terms of different regions of the stereo-
graphic triangle in Figure 1, the evolution of a population of
nanoparticles of different shapes can be represented in terms of
the relative growth rates of regions R1 and R2 as well as any
kinetic enhancements due to the difference in the weighted
mean curvature and growth enhancement effects at twin
boundaries using a form similar to eq 17. If chemical etching
occurs, it can lead to shape dependent Ostwald ripening, i.e.,

Figure 5. Singly twinned particle shapes obtained by varying the
relative surface growth velocities and kinetic growth enhancements.
(a) Particle with fast {111} growth and no kinetic enhancement, (b)
sharp bipyramid obtained with fast {111} growth and kinetic
enhancement at the re-entrant surfaces, (c) thin triangular platelet
obtained with fast {100} growth and enhancement at both re-entrant
surfaces and twin plane, (d) truncated bitetrahedron obtained with fast
{100} growth and enhanced growth at the re-entrant surfaces, and (e)
thin hexagonal platelet obtained with fast {100} growth and enhanced
twin growth.

Figure 6. Reaction mixture from PVP-capped Au nanoparticles
produced by reduction of hydrogen tetrachloroaurate (HAuCl4).

53,54

Many of the shapes modeled by the modified kinetic Wulff
construction are present: truncated bitetrahedra (top left and top
middle), sharp decahedron (top right), icosahedra (middle left and
middle right), and thin hexagonal platelet (bottom). The scale bar is
50 nm. Reprinted with permission from ref 55.
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certain shapes shrink, whereas others grow, as has been well
documented in cases of island growth (e.g., refs 64−66). This
can obviously lead to shape selectivity. For instance, if a set of
nuclei of single crystals and LTPs are initially present, the wmc
for an odd number of twin boundaries (a stacking fault can be
considered as two twin boundaries) may favor growth of
triangular platelets, and size reduction of other shapes.
More formally, the differential equations for a population of

nanoparticles can be described as

μ=
V
t

K S V
d
d

( , , )i
i i

Ext
(20)

where the rate of growth (or shrinkage) of particle “i” will
depend upon its shape Si, volume Vi, as well as the external
chemical potential μExt from liquid or gas phase atoms. As
illustrated in Figure 7, depending upon the precise conditions,

different nanoparticles will evolve at different rates, at any given
time each approaching the appropriate kinetic or thermody-
namic shape. This is why one frequently observes many
different morphologies within the same reaction mixture, as for
instance in Figure 6.
It is not hard to formulate the differential equations for

growth including twins using, for instance, phase field methods
with appropriate constraints to preserve the integrity of internal
boundaries, and for different problems this has already been
done. What is less than clear is exactly what are the values for
the relevant reaction rates, nucleation rates, addition rates at
step edges versus others as well as the chemical potentials in
solution. While they could be treated as empirical parameters,
experimental measurements would be desirable, as they could
provide currently unavailable data. As an example, by obtaining

careful high resolution electron microscopy measurements of
the sharpness of the apexes of octahedra as a function of the
chemical potential, it should be possible to quantify the role at
small sizes of the weighted mean curvature via eq 9, in the limit
of hi → Li.
Some issues related to particle shape remain unaddressed.

For applications, specific shapes should survive for days to years
in use, and this raises issues about shape transitions. It is known
that using surface diffusion rates extrapolated from high
temperatures down to room temperature yields nanoparticle
shape equilibration times of a few minutes; in reality, this does
not occur, and the question of the barrier to shape transitions is
still an open issue. Surface chemisorbed species may damp
room temperature diffusion, and there may also be mechanistic
transitions at low temperatures. Additionally, with isotropic
surface free energies, no modified Wulff shape (i.e., twinned) is
stable; they are at best metastable. When surface faceting is
added, numerical calculations imply a barrier at least in a
continuum model. Perhaps more significantly, motion of partial
dislocations is necessary for the twins to move out of the
particle, which requires too much activation energy at room
temperature. Hence, as long as the temperature is low enough
(nanoparticle equilibration is rapid based upon the epitaxial
growth literature at around 200−300 °C) and surfactants or
other species remain on the surface, the particle shape should
be preserved. Note that this may not necessarily mean that
kinetically grown nanoparticles will be of long-term use in most
heterogeneous catalytic applications (especially at high temper-
atures), although additional stabilization techniques, such as
epitaxy, can be employed.117,118

The kinetic model presented here may be oversimplified in
some respects. Grouping the effects of defects and strain on the
growth in a single enhancement factor is a reasonable first
approximation, but the enhancement could in principle depend
upon solution concentration for liquid-phase synthesis, or
depend upon chemical potential gradients in a more exact
model. This would be of interest for better modeling of
nanoparticles on substrates, such as those used for heteroge-
neous catalysis. Velocity enhancements can be added to a
kinetic Winterbottom8 or Summertop9 construction as was
done for the kinetic modeling of two-dimensional island
growth;119 these follow the current modification directly, since
there is no growth at the buried particle/substrate interface in
most cases.
Careful, systematic electron microscopy analysis, proving (or

disproving) size independence of shape as a function of the
growth condition, would be the most useful data to move the
field forward, providing insight into the underlying thermody-
namic and kinetic contributions. In epitaxial growth, this was
done some time ago to ensure commercially reproducible
results; similar data for solution growth would greatly help the
current understanding of nanoparticle growth.

■ CONCLUSION

A kinetic version of the modified Wulff construction was
developed and used to successfully explain the plethora of
different shapes obtained for twinned fcc materials. This model
uses growth velocities and includes growth enhancement at
favorable nucleation sites such as re-entrant surfaces and twin
boundaries. The code and graphical user interface made
available in the Supporting Information provide a useful
teaching and research tool.

Figure 7. Growth kinetics diagram for two nanoparticles 1 and 2. The
blue lines represent growth rate contours, the dashed red lines the
Lyapunov solution, and the black lines the actual growth trajectories.
At very small sizes, the population of each is in a statistical
thermodynamic equilibrium. During growth, the morphology oscillates
about the Lyapunov solution. In this case, nanoparticle 1 grows slower
than 2; the exact details are strongly dependent upon the experimental
growth conditions (temperature, time, chemical potentials, surfactants,
etc.).
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