
Chapter 26
Models for Precession Electron Diffraction

Laurence D. Marks

Abstract Precession Electron Diffraction has become an increasingly popular
method of obtaining crystallographic data, and may well replace older methods such
as selected area diffraction or microdiffraction. While a full model has to involve a
dynamical calculation, some approximations give some indication how the results
vary as a function of thickness and precession angle. This note reviews some of the
basic models, their advantages and failures as well as some of the open issues.

26.1 Introduction

Over the last few years Precession Electron Diffraction (PED), a technique for
acquiring electron diffraction intensities, invented in 1994 by Vincent and Midgley
[1] has started to emerge as a viable technique for determining structures based
solely upon the intensities, and/or with some assistance from crystallographic
phases determined using HREM or similar techniques. An incomplete list of refer-
ences is [1–50]. It was clear from the first attempts to use the method coupled with
direct methods that it gave remarkably better results than conventional diffraction
techniques except in relatively special cases such as surfaces where the diffraction
intensities are very close to kinematical. Hence the quandary; electron diffraction
can only be properly be described using dynamical diffraction, but tools based upon
a kinematical formulation work. Why? While the detailed answer to this is still not
fully understood, many of the details are and I will here briefly describe the main
models along with their advantages and limitations.
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26.2 Kinematical Model

The kinematical model has to be mentioned as it is the simplest. The result one
gets is that the intensities are proportional to the square of the crystallographic
structure factor. Unfortunately except for special cases such as surfaces or graphene
monolayers the method has only a very limited relevance for standard samples as an
accurate model, as illustrated in Fig. 26.1, failing by 10 nm thickness.

26.3 Blackman Model

The Blackman model [51, 52] makes the assumption that the integration over angles
can be considered as equivalent to a complete integration of a two-beam diffraction
problem for all possible angles. In more detail, the intensity for a given reflection
can be written as the integral of a Bessel function:
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Where Ÿg is the standard extinction distance which scales inversely with the
structure factor and t is the thickness. The result one obtains is that the intensity,
for a relatively thick crystal, scales directly as the crystallographic structure factor;
for a thin crystal it scales as the square of the structure factors. While this is again
a useful, simple approximation which has been sometimes used and is better than
kinematical, there are several fundamental problems with it:

(a) It neglects most dynamical diffraction effects, as the two-beam model really
only applies for specific orientations.

(b) It neglects the fact that in a precession experiment only a limited range of angles
are used.

Unfortunately it is not accurate, R1> 40% for 200 Å, see Fig. 26.2.
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Fig. 26.1 Comparison of kinematical intensities (y axis) versus full dynamical calculations
(x axis) for different thicknesses for (Ga,In)2SnO4 with the R1 shown
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Fig. 26.2 Values of the R1 from a Blackman model versus a full dynamical calculation (y-axis)
for (Ga,In)2SnO4 as a function of thickness in Angstroms along the x-axis

26.4 Methods Based Upon Lorentz-Type Corrections

From the earliest days of PED a different approach has been to try and separate the
contributions associated with the integration over angle and dynamical diffraction
effects, what has been called a Lorentz correction. In more formal fashion, the
intensity would be written as

I.g/ D L.g/ � B.g/

where L(g) is an approximate form to take into account the integration range, and
B(g) is purely a diffraction term, for instance Kinematical or the Blackman equation.
The concept is that one might then be able to precalculate L(g) and remove it,
thereby obtaining a better form. A simple form for L(g) suggested by Gjonnes [2] is

L.g/ D g

s

1�
�
g

2R0

�

Where R0 is the precession scan angle in reciprocal Angstroms. While this is an
interesting idea unfortunately to date it has not been particularly successful as
illustrated in Fig. 26.3.

26.5 1s Channeling Model

The concept of a channeling approach is to expand the electron wave in terms of
local orbitals rather than plane waves, e.g. [53–56]. One can then approximate by
using just the 1s states, which works well for HREM and STEM imaging [57].
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Fig. 26.3 Scatter plot of Lorentz-corrected data (y-axis) versus the true values (x-axis) for (Ga,
In)2SnO4 with two different precession angles and three different thicknesses

At least in order of simplicity, this model is an attractive approach. The result of the
model is “atom-like” features and it has been shown that even though the results are
dynamical, the deviations from kinematical are in fact statistical in character rather
than being systematic [58, 59]. Since both direct methods and refinements are (in
principle) stable against statistically random deviations, it is therefore true that in
some cases on a zone axis these methods will work well. Alas, while there may be
some relationship to what one finds in a PED pattern, to date this approach has not
proved to be useful. (A 1s-model leads to scattering which is dominated by atomic
strings which is similar to what PED yields so there may be some connection, but
so far there is no proof beyond qualitative intuition.)

26.6 Two-Beam Model

The first model to account for at least some of the effects present is a two-beam
model with a proper tracking of the range of integration. A specific form [26] is

C2beam .g; t; �/ D Fg
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Where the effective excitation error seff D .s2 C �2g/
1=2

is used. This is better, but
again not perfect and breaks down for a thickness much beyond 10 nm as illustrated
in Fig. 26.4.
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Fig. 26.4 Comparison for (Ga,In)2SnO4 of the R1 for a two-beam model versus thicknesses (left)
compared to a kinematical model (right). Unfortunately while there is some improvement, it is not
enough

26.7 Full Multislice or Bloch Wave Methods

Good agreement between experimental and calculated intensities has been obtained
using methods where all the dynamical diffraction effects (except fine details of
inelastic scattering/adsorption) are taken into account. These are based upon either
the multislice method [60–63], a fast numerical integration of the intensities, or
Bloch Wave methods [64–66] where a matrix problem is solved. Assuming that the
potential used is the same for the two methods, it is known that they give identical
results provided that they have been properly coded.

The approach [13], as illustrated in Fig. 26.5 is to consider all different incident
beam directions and integrate the final intensity over these, for instance the set 1–8
below.

Without any additional refinement one can easily obtain an R1 of about 0.1, as
illustrated below in Figs. 26.6 and 26.7.

26.8 Intensity Ordering

An explanation of why the methods work, which unfortunately slightly begs the
question of the details of when they will fail, is intensity ordering [67]. Instead
of the intensities being simply related to the structure factors as in kinematical or
Blackman approaches, the hypothesis of this model is that reflections with large
structure factors lead to large intensities in PED, those with small structure factors
small intensities. By inspection this is largely true for the plots shown above which
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Fig. 26.5 Schematic of a
dynamical simulation. For a
range of different tilts a full
calculation is performed and
the results are summed.
Specific results for eight
illustrative tilts are shown; in
general 512–1,024 different
values are used

Fig. 26.6 R1 as a function of thickness in Angstroms from a multislice calculation using
experimental data for (Ga,In)2SnO4 both on-zone (upper line) and precessed (lower line). The
minimum with precessed data is much clearer, and the R1 much lower

plot the kinematical structure factors versus the true values. This is a sufficient
condition for direct methods to work, indeed in the early days of the technique
with “by eye” measurement of intensities for x-ray diffraction from film, structures
were solved by dividing the intensities into those which were strong, those which
were of medium intensity and the weak ones. Classical direct methods only use
the strong intensities, so provided that these are representative then †2 and similar
relationships will be preserved.
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Fig. 26.7 Plot of measured amplitudes versus multislice calculations for the optimum thickness
shown in Fig. 26.6

26.9 Summary

For certain PED has emerged as a powerful tool for solving structures. The inten-
sities are much better behaved than those from zone-axis diffraction particularly if
larger tilt angles are used. Unfortunately most simple models to date fail to explain
fully the dynamical diffraction effects in enough detail so one has to do a full
calculation.

Fortunately the PED intensities are not chaotic, but are ordered which is enough
for direct methods to work and there is now extensive empirical evidence showing
that this approach can be used to obtain an initial structure for later refinement either
(or both) from powder x-ray data or by using a dynamical approach.

What remains as a problem is how to refine the structure, or perform structure
completion – in most respects the later is a more significant issue as structure
completion is in many respects why direct methods work. The large R1 values with
kinematical models are problematic. In principle one might be able to use a two-
beam model as an improvement upon kinematical in a refinement as implied by an
initial estimate [26] and one can use it to approximately invert a set of intensity
data. This might be a viable refinement approach as it would be faster than a full
dynamical method, and this is currently under investigation.

There are also other alternatives. For instance, some time ago it was suggested by
Peng [68] that one could use a quasi-kinematical approach, an idea that may well be
worth returning to. Alternatively there are ways to exploit the implicit periodicity in
reciprocal space (Brillouin Zone folding) so rather than calculating 1,024 different
tilts a much smaller number of Bloch wave calculations is needed, perhaps only 1
if chosen judiciously or at most 8 [47]. This could give a 103 improvement in speed
and might make a Bloch wave refinement viable on a reasonable computer; full



288 L.D. Marks

0.35 0.012

0.010

0.008

0.006

0.004

0.002

0.000
0.0120.0100.0080.0060.004

Bloch, exact precession circuit
0.0020.000

0.30

0.25

0.20

0.15

0.10

0.05

0.00
0 500 1000

Thickness [A]

R
-F

ac
to

r

F
ro

m
 S

-m
at

rix
 c

ol
um

ns
 s

in
gl

e 
E

lg
en

va
lu

e 
ca

lc
.

1500

8

4

21

2000

Fig. 26.8 Plot the R1 for (Ga,In)2SnO4 using a limited number of tilts exploiting Brillouin-
Zone folding for different thicknesses relative to a full calculation (left) with a scatter plot of the
intensities on the right for one Bloch-wave as arrowed

refinements will be unrealistically slow if all points are used. This is illustrated in
Fig. 26.8 below which compares the results of an accurate Bloch wave calculation
with 1,024 tilts to a much smaller set.

Despite these limitations, PED has moved from the early days when it was
a curiosity to a mainstream tool for electron microscopists to use to determine
structures where real-space imaging methods are problematic, for instance when
there is beam damage or ambiguities in the interpretation of the images. Even with
its current limitations the R1 values obtained are in most cases rather better than one
can obtain with alternative approaches.
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