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Abstract

We present a method for improving the speed of geometry relaxation by using a harmonic approximation for the interaction potential
between nearest neighbor atoms to construct an initial Hessian estimate. The model is quite robust, and yields approximately a 30% or
better reduction in the number of calculations compared to an optimized diagonal initialization. Convergence with this initializer
approaches the speed of a converged BFGS Hessian, therefore it is close to the best that can be achieved. Hessian preconditioning is
discussed, and it is found that a compromise between an average condition number and a narrow distribution in eigenvalues produces

the best optimization.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In many cases the slowest step in a density functional
calculation (DFT) or other ab initio calculations is finding
the optimal atomic positions which minimize the total
energy. With older minimization approaches, such as the
conjugate gradient method, the number of evaluations
scales proportionally with the system size. More powerful
are quasi- Newton methods, in particular the Broyden—
Fletcher—Goldfarb—Shanno (BFGS) method, which can
show quadratic convergence provided that breakdowns of
the curvature condition (discussed later) are protected
against. Essential to the quasi-Newton methods are esti-
mates for the gradient and curvature of the potential energy
surface; the latter being stored in a matrix commonly
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referred to as the Hessian, which contains all second deriv-
atives (or atomic force constants). The classic BFGS
method uses a simple diagonal matrix as the initial Hessian
estimate, perhaps with the initial diagonal term using the
Shanno-Phua scaling [1]; see also the discussion by Nocedal
and Wright [2]. In principle one could achieve far better
convergence by some appropriate choice of the initial Hes-
sian estimate, as suggested by some recent analysis [3-6].

In this paper, we detail an approach for improving on
the estimate of the starting Hessian, using a harmonic
potential describing the interactions between nearest neigh-
bor atoms. We find that it is important to combine this
with a diagonal component plus an appropriate scaling
term. Slightly unexpectedly, what turns out to be important
is a balance between making the initial Hessian estimate
replicate that of the true problem and keeping the condi-
tion number of the estimate small.

The structure of this note is as follows. First, we briefly
review conventional optimization methods (Section 2),
with some comments about how they might be improved
for density functional theory (DFT) calculations. Second,
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we outline the algorithm for generating the Hessian esti-
mate and implementing it into the all-electron (linearized)
augmented-plane wave + local orbitals (L/APW + lo)
package WIEN2k [7] (Section 3). The robustness of the
program is tested by performing geometry relaxations for
various classes of materials (Section 4). Finally, we con-
clude with a discussion on the importance of Hessian
preconditioning, and we propose a general scheme for
resolving these problems.

2. Optimization methods

At the heart of quasi-Newton methods is an expansion
of the energy in the form

1
ET:E—i—gTs—i—EsTHs (1)
where E' is the predicted energy, E and g are the energy
and gradient for a step s from the current state, and H is
the Hessian matrix. The optimum step can be obtained
directly in principle as

s=-H'g (2)

assuming that the Hessian is known. The concept of a
quasi-Newton method is to calculate an approximation
to the Hessian (or its inverse depending upon the exact
method used) from previous gradient information. The
most successful approaches use what are called secant
methods [8], in particular the Broyden—Flecher—Gold-
farb—Shanno (BFGS) method [9-12]. The most important
contribution from these minimization algorithms is the
use of Hessian updating techniques, which allow for the
collection of more information about the potential energy
surface (PES). In general, after each cycle the Hessian is
updated during the minimum search until the convergence
criterion is satisfied. It is important to recognize that con-
vergence can be achieved without ever reaching the true
Hessian, which suggests that the efficiency of the structure
relaxation depends on both the starting geometry and the
initial conditioning of the Hessian estimate (discussed
later). In fact, the true Hessian of the problem is not always
the optimal one, and a compromise between conditioning
and accuracy is much more desirable for optimization
problems; as Baali has shown much of the success of qua-
si-Newton methods relies on self-scaling algorithms [13,14].
The first estimate for the Hessian is usually a unitary ma-
trix, although this is not required if physical knowledge
of the system is available. For instance, in an earlier version
of the WIEN2k code [7] an estimate of the bonding force
constants and atom multiplicities was used for the initial
diagonal elements—this worked much better than a simple
constant. As we will see, one can do better than this.

The mathematics behind the secant method is that a
typical iteration for the minimization of f{x) is given by
the form

Xip1 = X + oyedy (3)

where d;, = —B,'Vf(x;) and By is the approximation for
the true Hessian that is updated and the step size o is
chosen by a line search or a trust-region method (as here)
[15-17].

For any two consecutive iterations, x; and x;y;, with
their gradients, Vf{x;) and Vf{x;+1), information about
the curvature of the surface (the Hessian) is known since

[Vf (k1) — VI (x0)] = Bryi a1 — x4 4)

writing s, = x4+ — Xx and q; = Vfilxg+1) — VA(xx), this can
be rewritten as

q;, = Bioise (5)

The expression given in Eq. (5) is known as the secant
equation. An important constraint is that By;; needs to
be positive definite for the step to be downhill. Multiplying
Eq. (5) on the left by s, yields what is called the curvature
condition s;-q, > 0. This is equivalent to the geometric
interpretation that over the step length the object function
has positive curvature (i.e. the step is taken in a lower
energy direction). When this condition is satisfied, Eq. (5)
will always have a solution and the BFGS update

_ qqu BkskSsz

B..; =B AB AB; = — 6
it 1 « + ABy, K ase STBsr (6)

will maintain a positive definite approximation to the
Hessian.

It is worth mentioning that the curvature condition does
not always hold, so it must be explicitly enforced otherwise
the BFGS method can fail completely; this is one of the
weaknesses of these updating methods. This often occurs
when the character of the Hessian changes substantially
during the course of the minimization, which is more likely
to occur if one starts far from the minimum. Fortunately,
the BFGS update is rather well behaved, in that the
Hessian estimate will tend to correct itself in a few steps,
as compared to other approaches [2]. Three conventional
techniques exist for handling the case when the curvature
condition fails:

1. The calculations are restarted from the current position
with a diagonal initial estimate.

2. A skipping strategy is employed on the BFGS update
(Bit1 = By).

3. The use of a revised (damped) BFGS update [2] which
modifies the definition of q.

For the first case, any important curvature information
is lost and previous steps are essentially wasted. The second
technique allows one to incorporate the curvature informa-
tion at previous iterations. However, it requires careful
control, and too many updates may be skipped resulting
in further loss of curvature information. (The limited mem-
ory method [18,2] can do this better because it skips steps
far from the current location.) The particular code we
employed used the third method where the scalar t; is
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defined by
(1 — Hk)BkSk for

t, = (0-2)SZBksk >0 and u, = 9/((]]( +

1, if siq >t
gk = 0 sZBksk if T
8 s —sTar it s, q, <t
The BFGS update is then given just as in Eq. (6), with qy
replaced by ug. This formulation enforces the curvature
condition, and allows for an interpolation between the
unmodified Hessian update (6, =1) and the Hessian at
the current iterate. As a consequence, every step contrib-
utes to defining the curvature, and no steps are wasted.
Much of the previous discussion has been concerned
with the BFGS update, but selection of the step size oy
(and direction) merits attention. In the code we have
(pMNG.F from NETLIB with some minor changes) the
entire BFGS update is wrapped within a trust-region algo-
rithm which is used to calculate the best step to take based
on a quadratic model of the objection function (the PES).
While line search methods can be used, for a DFT problem
where the gradient comes essentially for free, the most effi-
cient approach is a trust-region algorithm [19]. In this
method information about the object function f'is collected
to construct a quadratic model function % that is said to
adequately sample f in the neighborhood of the current
iterate. The model function

1
L(sk1) = f(sx) + ngSk+l + ESkT+1BkSk+1

uses the current estimate of the Hessian and imposes an
additional constraint on the step length, ||s;+1]] < R where

R is the trust region radius. The step size which minimizes f

is then chosen such that it sufficiently minimizes . over the
trust region; the radius R is then adjusted iteration to iter-
ation according to how well the step reduces the function
with respect to the predicted reduction value determined
from the step size (a so called effectiveness measure) [2].
Therefore, if a poor step is taken, the radius is decreased,
until the current Hessian approximation is good enough,
and then it is subsequently expanded. Compared to line
search methods, this approach may not give the best
improvement per direction, but often will be faster in terms
of the net improvement per function evaluation.

The routine in our minimization has the added feature
of using an adaptive trust region method, in that it switches
between different models in order to determine the optimal
step size [20,21]. The algorithm first calculates what it
believes is an appropriate step size (such that the length
of the step is less than the radius of the trust region). It
is unusual to calculate the exact trust region step, so
approximate trial steps are found which approximate the
solution in this region. For each iteration the algorithm
computes the step size as the linear combination of the
steepest descent direction and a quasi-Newton search direc-
tion. Different step types are then chosen (Fig. 1), the main
ones being:

steepest descent

trus"t"f'eﬂgion

model object function

Fig. 1. Schematic illustration of the principle steps used in the BFGS
algorithm. The curved trajectory (dashed-dotted line) corresponds to the
optimal path to the minimizer of the object function. The step is selected
based on the trust region (dotted circle) of radius R and how well it
minimizes the objection function (elliptical contours). The Cauchy step (C)
is perpendicular to the contour lines of the object function at the current
position, and the full Newton step (N) is shown along the gradient of the
object function. The double dogleg step (DD) is shown to be biased
towards the Newton direction according to the implementation of the
Dennis and Mei algorithm (cf. Ref. [20]).

1. A restricted Cauchy step (sgc = —Rlé—") if the trust

Al
radius R is smaller than or equal to the Cauchy step
28
. g Bige ) . .
gradient of the quadratic model of the object function

and is of a length defined by the minimizer of that
function.

2. A full Newton step (sy = —B,;lgk) is taken in length and
direction if the trust region allows it (large enough),
otherwise a step in the Newton direction of a limited
length is taken, such that it satisfies the constraint of R.

3. A double dogleg step (spp =sc + yi(sn — sc)) if the
trust radius is between the Cauchy and Newton steps.
The y, parameter (see Fig. 1) describes the length and
direction between the Cauchy point and the intersection
of the trust region. The double dogleg may therefore be
seen as a compromise between the Cauchy step and
Newton step, whereby the direction and length is given
by the line connecting these steps through the intersec-
tion of R.

(sc =— gk). The Cauchy step is taken along the

This approach is used since it provides a stronger bias
toward the Newton step direction, as an attempt to accel-
erate the optimization. The purpose of the Cauchy step is
just to minimize the local model over a space that is known
to be well defined in the steepest descent direction. Since
steepest descent directions do not always provide the best
minimization, alternative candidate steps (and directions)
are evaluated. Conventional BFGS methods as outlined
above work very well, and the code we have used (with
some minor additions) is one of the most respected and
robust versions freely available. For some special problems
other codes might work better, but this is probably close to
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an universal algorithm. It uses reverse communication,
which makes it rather easy to implement into programs.
However, there is still room to possibly improve the update
method for DFT problems because as we have mentioned,
the gradient comes almost for free:

e Conventional trust region methods discard a bad step; it
might be better to incorporate this information into the
BFGS update then recalculate a revised step.

e Most BFGS codes attempt to keep the local memory
requirements and CPU time low. However, for a DFT
problem these are generally negligible compared to what
the main iterations require. Hence one might improve
the codes by doing more detailed and accurate analysis
of plausible steps; for instance, going beyond a simple
double dogleg method.

¢ As mentioned above the weakness of the BFGS method
when the curvature condition fails might be something
where further research would be useful. For instance,
one could easily keep a step history and switch to a lim-
ited-memory method or an update based upon less than
the full number of steps. One idea would be to search
over all the history of previous steps to find an “opti-
mum’’ Hessian estimate that will do better than the three
conventional methods described above.

3. Implementation

The general approach for constructing the initial Hes-
sian approximation is now outlined. First, the symmetry
independent atom set is expanded by the appropriate oper-
ators to construct the full set of atoms in the structure. A
search for the free variable parameters to be optimized is
subsequently performed, identifying special sites whose
positions are not allowed to vary for the particular symme-
try of the structure. A nearest neighbor search algorithm is
then carried out over the expanded atom net, to a user
specified cutoff distance, in order to determine the length
over which the interatomic potential acts. The cutoff terms
and bonding strength used are discussed later. The ele-
ments in a trial Hessian are then generated by numerical
differentiation of a simple pairwise energy with a step size
of 10 A, which tests show to be adequate. The final step
is to construct an initial estimate to be used in the form

Binitiat = YBiriar + 771

where y and # are constants, and I is the identity matrix.

We have experimented with two models for the pairwise
energy, a spring model and a simple harmonic approxima-
tion. The harmonic model consistently outperformed the
spring model, for reasons which we believe are associated
with the conditioning which we will discuss later. The har-
monic model can be written as

1

Table 1
Free model parameters in the Hessian algorithm that may be used to
customized the estimate

Parameter  Values Description

2z 0.05 Cutoff term limiting the number of atom pairs
v 1.50-2.50  Strength of exponential decay bonding term
Ry 8-12 Maximum nearest neighbor distance

y 0.20-0.40  Multiplicative rescaling term

n 1.00-4.00  Additive diagonal rescaling term

where Ar;; is the change in the distance between the two
atoms 7 and j, and I';; is an appropriate spring constant
linking them. Here an exponential term is used to model
the pairwise bond strength, I';;=exp[—v(r;; — dm)/dm],
where v is a user-specified exponential decay term
(discussed later) and d,, is the shortest nearest neighbor
distance. For practical purposes the absolute value of the
spring constants are not important, but only the relative
ratios of them.

After building the full Hessian for the structure, it is
symmetry reduced to contain only the symmetry indepen-
dent atoms and transformed to conventional crystallo-
graphic fractional units. Finally, a Cholesky factorization
using a LINPACK routine (pcHDC) is performed and the
Hessian approximation is introduced in the first step of a
slightly modified version of the DMNG.F minimization rou-
tine from NETLIB. This minimizer was incorporated into
the geometry optimization routine found in WIEN2k by
one of us (LDM) some time ago, and is now widely used.

All that is required by the user is a file from which the
crystal structure is read, and a parameter file which
contains constants used in the model during the Hessian
construction. The parameter file was found to be quite use-
ful, as it allows for the user to tailor the Hessian for differ-
ent types of systems (e.g. soft or hard). The parameters that
were found most useful and which have been included in
the model can be found in Table 1. Values that have been
shown to be quite reasonable for most calculations are also
listed.

A description of each parameter follows: Ry, defines the
maximum distance (in atomic units) to which the nearest
neighbor search algorithm includes atoms for building
the energy terms; v is used in the exponential decay func-
tion (I'), which describes the strength of the pairwise inter-
action between atoms. An additional cutoff term (y) is used
to restrict which atom pairs are included in the gradient
calculation. Once the exponential weighting factor becomes
smaller than this y-value, those bonds (or atoms pairs) are
no longer considered in the force calculation. The affect of
varying these parameters is discussed later, as are the two
scaling terms y and 7.

4. Results

The initializer described above has been used for more
than a year for a range of problems, and appears to behave
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well for cases where the initial point is both close to or far
from the minimum. To investigate the effectiveness of the
initializer, we used the all-electron DFT code WIEN2k
and implemented it into the structure optimization routine
[7]. In WIENZ2Kk, space within the unit cell is partitioned
into spheres that define the atomic regions and an intersti-
tial region linking them. The basis functions are then
composed of atom-like wavefunctions inside the spheres
centered about the ion cores with a radius (Ryr) deter-
mined by the muffin-tin approximation, and outside these
atomic regions by a plane wave expansion. The partial
solutions to the Kohn-Sham equations are then matched
at the interface. For more details on WIEN2k see Ref.
[7], additionally a review of the LAPW method has been
given by Singh [22]. To evaluate the performance in detail,
we have relaxed in a more systematic fashion a series of dif-
ferent structures with varying degrees of freedom (relaxa-
tion in one or more Cartesian coordinate directions). A
summary of these structures is given in Table 2. For these
examples the PBE-GGA exchange-correlation functional
[23] was used with a plane wave cutoff of RK,., = 7.00.
Values for the muffin-tin radii used in the calculations
can be found in Table 4 for each system. Multiple conver-
gence criteria were also required and they are as follows: (1)
the force vector on each atom was less than 1 m Ry/a.u.;
(2) the energy tolerance was 0.1 m Ry; and (3) the charge
convergence within the muffin-tins was 5.0 x 10 %¢. All of
the optimized energies (Ey) for the structures are available
in Table 3.

For each structure, both the number of geometry steps
required by the minimization routine and the number of
self-consistent field (SCF) iterations (or cycles) to satisfy

the convergence criterion were reduced with our initialized
Hessian. Table 3 lists the number of geometry steps
required to achieve an equilibrium structure using both a
simple diagonal initializer and our Hessian formulation.
We note that the total CPU time scales as the total number
of SCF cycles, which is a combination of both the number
of geometry steps as well as internal DFT algorithm details
such as how the density is interpolated when the geometry
changes as well as how the non-linear root finding for the
fixed-point SCF iteration is performed. The latter is a sep-
arate research topic, and we will limit the current discus-
sion to only the deviation in the number of geometry
minimization steps for each estimate. For each case exam-
ined, no more than three steps were rejected by the Trust-
Region algorithm. (It is worth mentioning that the diago-
nal initializer was previously optimized to be close to the
best, general form available, a factor of at least 30% or
more better than a simple unitary scaling.) In general the
number of geometry minimization steps to converge was
reduced by 30% compared to the reference diagonal
Hessian.

4.1. Hessian estimate efficiency

In order to evaluate the accuracy of the initial Hessian
and its effects on convergence, structure relaxations were
also performed using a converged BFGS Hessian from a
previous calculation. We cannot prove that this is the best
possible Hessian, but from previous experience it appears
to be very close to optimum. Table 3 shows the results
for the number of geometry steps required to reach conver-
gence with each of the different Hessians. It is important to

Table 2

Material systems investigated with relevant crystallographic information

System Lattice Space group (symmetry) Atoms DOF
SiO, Primitive tetragonal 136 (P4>/mnm) 6 1
LaCuOS Primitive tetragonal 129 (P4/nmm) 8 2
MgVO; Centered orthorhombic 65 (Cmmm) 10 3
SiO, Rhombohedral 154 (P3,21) 9 4
BiyTiz0;, Body centered tetragonal 139 (I4/mmm)* 38 28

# Symmetry about odd digits (B2cb), where the digits are the number of TiOg octahedra in the perovskite-like fragments of the structure.

Table 3

Summary of optimization results

System Iterations Step Size E; (Ry) Ey (Ry)
Nnpfg niNIT ncv Apr ArNir Acy

SiO, 4 3 2 0.098 0.035 0.170 62.719 62.757

LaCuOS 6 6 3 0.105 0.233 0.706 9.415 9.480

MgVO;, 11 5 8 0.153 0.630" 0.555* 2.147 2.493

SiO, 11 7 7 0.152 0.268 0.649% 27.047 27.100

BisTi30» 35 23 21 0.024 0.055 0.184 58.397 58.542

The number of geometry steps are given for the default minimization method (npg), the Hessian initializer (n1n1) and a converged BFGS Hessian (ncy).
Similarly, the length of the first geometry step sizes from the minimization algorithm are given for each approach. * indicates a Cauchy step, and # dogleg
step, while those without any denotation are of the standard Newton type. The absolute values for the starting geometry energy (E;) and the total

converged energy (E,) are provided.
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Table 4
Muffin-tin radii (Ryt) used for the total energy calculations in the
electronic structure package WIEN2k

System Ryrr (Bohr)

SiO, Si=1.70 and O =1.30

LaCuOS La=2.40, Cu=2.20, 0O=1.70 and
S =2.00

MgVO; Mg =1.60, V=1.60 and O = 1.40

SiO, Si=1.70 and O = 1.50

Biy T30, Bi=2.28, Ti=1.74 and O = 1.54

recognize that the number of geometry minimizations
required with our initial estimates approaches (and is less
for the case of MgVO;) that of the converged Hessian.
Furthermore, we recognize that as the system grows in
complexity (size and number) there may remain room for
improvement in the reduction of geometry steps that can
be obtained. In these larger structures, the Hessian is sensi-
tive to small deviations in the off-diagonal elements, for
this reason a longer-range interaction potential describing
the pairwise bonding may show even better convergence.
Nonetheless, the experiments demonstrate we are
approaching the limit at which an equilibrium structure
can be found using current optimization methods. As
expected, the better the initial Hessian estimate of the true
curvature of the PES, the faster the optimization. Conse-
quently, we can conclude that our pairwise potential acting
over several nearest neighbors adequately provides an esti-
mate of the curvature of the PES. We also offer a more rig-
orous comparison in the next section by examining the
eigenvalues of each Hessian matrix.

We also studied the effect of the Hessian estimate on the
initial geometry step size used in the BFGS update. The
length of the first geometry step for each structure is given
in Table 3. It is clear that there is a decrease in the number
of geometry steps required with increasing maximum
geometry step size; this reduction in steps is attributed to
a more accurate Hessian (e.g. closely approximating the
eigenvalues). For a smaller geometry step length the time
to convergence increases, and the user can be fairly well
guaranteed that the minimization will proceed stably. A
more aggressive approach is to increase the geometry step
size permitted in the minimization algorithm, which can
be done with confidence if the initial Hessian resembles
the curvature of the PES. The geometry step sizes given
in Table 3 also suggest that our estimate is better than
the standard initialization, since the initial step is much lar-
ger. It might appear then, that by taking a larger geometry
step size, it is possible to reduce the total number of geo-
metry steps; however, this may result in the BFGS update
moving in directions of higher energy at first, before final
convergence is achieved. Increasing the step size too aggres-
sively may therefore result in more steps than desired.

4.2. Hessian conditioning

It is known that the rate of minimization for steepest
decent and conjugate methods is related to the condition

number of the Hessian matrix. The condition number is
defined as the ratio of ®Wmax/®min, Where @Wmax and Omin
are the largest and smallest eigenvalues, respectively. Typ-
ically, the minimizations steps required scales with the con-
dition number [2]. Essentially, the condition number of a
matrix measures how sensitive its inverse is in changes to
the original matrix: for a large condition number the
inverse of the matrix is very sensitive or unstable; a matrix
with a low condition number (bounded by unity) is said to
be well-conditioned, while a matrix with a high condition
number is said to be ill-conditioned. From our experience,
it turned out to be important to consider the conditioning
of the initial Hessian.

The results in Table 3 are from appropriately condi-
tioned Bj,iia matrices, whose properties (condition
numbers and eigenvalues) are given in Table 5. The
calculation of condition numbers, eigenvalues and their
corresponding eigenvectors were performed with standard
LAPACK routines for real symmetric matrices [24].

To explore the scaling effect, we present more detailed
results for the rhombohedral SiO, and BisTizO;, struc-
tures. Similar analyses were done on the other structures
examined, and the results presented are representative of
the general trends. Figs. 2 and 3 show the convergence in
energy for various scaling parameters. While the condition
number of the Hessian is a good estimate at how successful
the optimization will be, we have found that a better metric
is to examine the eigenvalues of the Hessian matrix. The
eigenvalue distributions are shown in the left panels of
Figs. 2 and 3 for SiO, and Bi4Ti301,. We find that an aver-
age condition number is best (see for example [25]), and a
tight cluster of the eigenvalues (small standard deviation)
is desired. From these figures, it is clear that with a wider
distribution of the Hessian eigenvalues, the structure relax-
ation performance declines. Additionally, the minimization
occurs more stably when the eigenvalue distribution is
narrow.

Our study suggests that we want to minimize the ratio
between the largest and smallest eigenvalues (as expected)
to optimize the condition number. However, we do not
want the matrix overly conditioned. In fact, the most
robust geometry relaxation occurs when the eigenvalues
deviate slightly from those of the true curvature. Rather
than achieving a fully converged Hessian (i.e. the eigen-

Table 5
Optimal scaling values for each structure and the largest and smallest
eigenvalues along with the condition number for each model Hessian
matrix

System Y n Omin, Pmax K

SiO, 2.75 1.05 1.0500, 12.050 11.476
LaCuOS 0.15 1.05 1.3179, 1.3821 1.0487
MgVO; 0.50 1.05 1.7298, 2.5868 1.4954
SiO, 0.25 1.05 1.2998, 1.8722 1.4404
BisTiz01, 0.12 1.05 1.0500, 1.4129 1.3457

The remaining parameters were fixed at Ry; = 10.0, v =2.00, and y = 0.05
for structure.
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Fig. 3. Left panels: Eigenvalue distribution of the Hessian matrix for the BiyTi30, structure with different Hessian scaling values (a) y = 0.25, n = 1.05;
(b) y =10.50, n = 1.05; and (c) the default optimization. The standard deviation (o) for the eigenvalues is given for each case. Right panel: Convergence of
the total energy as a function of the geometry step for each calculation. Ej is the converged value of the total energy for each run.

values correctly replicate the true PES) at a point in space
far from the optimal geometry, it is better to have the
eigenvalues gradually converge toward the true values as
the system moves from the initial geometry to the equilib-
rium configuration as suggested by Olsen et al. [26]. In fact,
the BFGS method can achieve convergence without actu-
ally replicating the true Hessian of PES.

5. Discussion

Throughout this investigation we have attempted to
reach the optimal rate of geometry relaxation for a given
structure. We have reached several conclusions on the opti-
mal values of the scaling parameters, and an approach to
finding them. We note that in optimization problems, scal-
ing tends to be the responsibility of the investigator owing

to the variety of applications; however, at times it is not
always clear what is the best or most robust means of doing
so.

This study has allowed us to build a set of parameters
that can aid in the relaxation of large condensed struc-
tures. These parameters listed in Table 1 are in order
of increasing importance and their effects on convergence
are now discussed. The most straightforward parameters
to set are y, v and Ry;. From our experience, variation in
these parameters only affected optimization performance
by on average a few geometry steps (and no change in
the number of SCF cycles) over the listed range. The
most significant effect of these parameters was found to
be on the initial step size in the BFGS update. Most
notably, increasing v resulted in larger steps sizes by a
few percent.
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In order to further optimize the efficiency of the minimi-
zation algorithm, scaling of the Hessian through the y and
n parameters was investigated. The best Bj,jyj, matrix
seems to be a balance between appropriately scaling the
diagonal elements with respect to the off-diagonal elements
and eigenvalue clustering. As we have shown, intelligent
choices for the scale parameters can enhance performance.
We note that in our model as the ratio of y/5 increases the
condition number of the Hessian increases exponentially.

We have also found that our conditioning method has
led to an increase in the number of Newton-type steps in
the minimization algorithm. This fact suggests that the
algorithm may be behaving more like metric based minimi-
zation techniques, i.e. Newton methods where adjacent
steps are forced to be conjugant to each other (s;+Bysx
=0). In addition, the convergence dependency on the
eigenvalue structure has been know for some time for con-
jugate gradient methods [27,28], but this behavior for
BFGS methods is less well-documented. In fact, the eigen-
value distribution has been reported to have minimal influ-
ence on convergence rates through tests performed on large
molecules [29]. However, as the object function more accu-
rately describes the PES, i.e. as harmonic about the mini-
mum, the BFGS update behaves like a variable metric
method in the sense that steps of optimal length are chosen.
Furthermore, the eigenvalue cluster phenomenon is consis-
tent with quasi-Newton type updating as Morales and oth-
ers have shown [30]. The eigenvalue spectrum of a matrix
can then be preconditioned to form narrow clusters in
order to accelerate convergence in optimization problems.
The preconditioning effects are a general property for solu-
tions to linear systems and for that reason are scalable. Our
results may then be applied to preconditioning a large set
of structures requiring optimization.

While generalized minimization algorithms are neces-
sary foundations for structure calculations, tailoring of
the geometry relaxation routines provides a robust means
for enhancing performance. Of course, the optimal
approach will be different for different structures. For prac-
tical purposes, it is important that these geometry relax-
ations be run with very little parameter adjustments by
the user. Therefore from the previous considerations, only
variations in the parameters which affect the conditioning
of the matrix and the clustering of the eigenvalues should
be considered, i.e. reduce the standard deviation in the
eigenvalues of B, The effect of this clustering seems
to be a consequence of the optimization method (the BFGS
update) and is still being investigated.

6. Conclusion

We have developed a customizable model (any inter-
action potential can be substituted) which adequately
approximates the curvature of the potential energy sur-
face of a crystal structure. The model has been parame-
terized to allow for modification for different system
types. We have shown that our method results an

approximate 30% decrease in the number of geometry
steps required to achieve an equilibrium structure relative
to the standard routines. In fact, our estimate is shown
to closely replicate the behavior of a converged BFGS
Hessian. The effects of preconditioning have also been
investigated, and a general approach for enhancing the
rate of convergence through scaling factors has been
suggested.
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