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Abstract 

A new method of solving the reflection diffraction 
problem using a stabilized edge in a multislice-type 
calculation is described. Results that compare it with 
Bloch-wave calculations show that it is a very robust 
solution and for one surface raises an important issue 
concerning the boundary match in the Bloch-wave 
approach. It is shown that the standard boundary 
match used is often invalid for reflection problems 
and may also be questionable for transmission prob- 
lems although here the effects will be smaller. The 
correct boundary match on a surface which need not 
be flat is described. 

I. Introduction 

An area of some recent interest is the improved 
methods of understanding reflection high-energy 
electron diffraction patterns and its partner reflection 
electron microscopy. One of the main issues which 
is currently under intense scrutiny is the method of 
extending from simple limited-beam dynamical 
calculations of simple surfaces to more general many- 
beam dynamical calculations of general surfaces. At 
present three different methods are under develop- 
ment. The first is a transfer of LEED (low-energy 
electron diffraction) calculation methods to the 
RHEED (reflection high-energy electron diffraction) 
case pioneered by Maksym & Beeby (1981) which 
appears to be a powerful method of generating rock- 
ing curves from simple surfaces with 2D periodicity. 
The second is the Bloch-wave approach which dates 
back to the 1930's (Shinohara, 1932) where the bulk 
Bloch-wave solutions are matched at surface to 
vacuum plane waves. The third method is to exploit 
the fast numerical multislice method to simulate sur- 
face reflection as introduced by Peng & Cowley 
(1986). 

All these methods have some problems, and we 
will briefly discuss some of them for the last two 
methods since this will be relevant to later sections 
of this paper. Two critical problems with the Bloch- 
wave method have been the surface matching and the 
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identification of the excited Bloch waves in a semi- 
infinite crystal. The standard Bloch-wave-matrix 
method (Metherell, 1975) leads to 2N eigensolutions 
and n x N + 2 N unknowns (n denotes the number of 
boundaries and N the number of active Fourier 
coefficients of the bulk potential) constrained by n x 
2N boundary conditions, n x N represents the num- 
ber of coefficients of the plane waves outside the 
crystal while 2N is the number of excitation 
coefficients of all possibly active Bloch waves inside 
the crystal. For the transmission case, both the back- 
reflected Bloch waves and the bottom boundary can 
be omitted. Then we have I x N + N unknowns con- 
strained by 1 x 2 N  boundary conditions. However, 
for reflection cases, the N back-reflected Bloch waves 
which are not excited inside the crystal can no longer 
be easily identified. Colella (1972) and Moon (1972) 
used an approach for the case where absorption is 
included by modelling the system as a crystal slab 
with a pair of surfaces semi-infinitely separated. 
Owing to the absorptive attenuation, there are 
actually only N Bloch waves excited in the crystal 
slab although 2N solved Bloch waves are all taken 
into account. In that case, there are 2 x N + 2 N  
unknowns constrained by 2 x 2 N  boundary condi- 
tions. To identify N Bloch waves excited in a semi- 
infinite crystal and avoid introducing the bottom 
boundary, the current flow argument was introduced 
by the authors (Marks & Ma, 1988; Ma & Marks, 
1989, 1991), which is equivalent to Collela's argument 
in the presence of absorption. However, all these 
arguments are based upon a planar boundary match. 
More recently, it has been pointed out by Kambe 
(1988) that one can simplify the bulk matrix for a 
low-index surface, although the simplification itself 
does not overcome the issue of boundary match and 
it just reduces the size of the numerical problems. 
Although how to match at the boundary is better 
understood now, a critical issue is still there: the 
effects of discontinuities between the terminated bulk- 
crystal potential and the zero vacuum potential and 
the associated neglect of any surface potential. The 
critical numerical tests for simple Au(001) surfaces 
in the [010] zone were carried out by the authors (Ma 
& Marks, 1990a, b, 1991). The tests showed no major 
problem. However, we will return to this point later 
to demonstrate that on more complicated surfaces 
this is a major issue. 
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The multislice approach is powerful due to the 
proliferation of multislice programs, but results suffer 
from edge effects. Owing to the limitation of simula- 
tion size of an incident beam in a numerical unit cell, 
a stationary solution for a virtually infinite incident 
wave becomes hardly obtainable. Although one can 
certainly obtain substantial physical information 
from a conventional multislice approach, for instance, 
a real-space picture of the scattering process, a troub- 
ling issue is to what extent this represents a true 
stationary solution in a semi-infinite crystal and what 
artifacts are introduced by the edges of the top-hat 
incident wave. 

The primary focus of this paper is to describe a 
modification of the multislice method which has been 
discussed in part in a previous short report (Ma, 
1990b). The method appears to stabilize reflection 
solutions against edge effects making rapid calcula- 
tions of general surfaces quite straightforward; we 
will compare the results of this approach with those 
of the Bloch-wave and simple multislice methods for 
three different surfaces, namely Au(100) in the [010] 
zone; 2× 1 reconstructed Au(001) in the same zone 
and finally for Au(l l0)  in the [ l i0]  zone. Interest- 
ingly, for the Au( l l0)  surface the Bloch-wave 
methods fail quite badly which has been reported in 
a previous short report (Ma, 1990a). We will show 
in the discussion that it is due to a failure of the 
conventional plane-surface matching between the 
bulk and vaccum. The source of this failure is 
discussed. 

II. Theoretical basis and numerical methods 

The key theoretical fact that we will exploit has been 
described previously (Ma & Marks, 1989) and is quite 
straightforward; we will briefly recap it here. With a 
standard Green function, we can write the Schrrdin- 
ger equation in its integral form: 

~b(r) = exp (i27rk. r) 

- (2m/4rrh 2) ~ G(r-r ' )V(r ' )~b(r ' )dr ' .  (1) 

Then this can be expanded as an iterative sequence 
(assuming that the wave field does not diverge) as 

~,(r) = exp (i2zrk. r) 

-(2rn/4,n'h 2) ~ G(r- r ' )V(r ' ) rn_~(r ' )dr '  (2) 

where @,,(r) is the nth-order approximation to 6(r). 
We next exploit the fact that due to the translational 
symmetry ofa  RHEED problem (Ma & Marks, 1991), 
we have 

~b(r) = ~b(q, y) = ~b'(q) exp( iay') (3) 

where q is a real-space vector in the xz plane, the y 
axis is along the incident beam and y' is a multiple 

of the surface translational symmetry along y. Com- 
bining (2) and (3) and considering Ishizuka & 
Uyeda's (1977) derivation, we can rewrite the series 
expansion (2) in the form of the multislice formula- 
tion of Cowley & Moodie (1957, 1959): 

~b'(q) exp [ i(n )aAy] = { ~'(q) exp [ i( n - 1 )aAy] 

xPg(q, Ay)}*P,(q, Ay) (4) 

where Ay is the slice thickness of each iteration taken 
here as the translational repeat along y. (We note that 
the right-hand side can be expanded as a series of 
multislice steps if Ay is fairly large.) Equation (4) 
shows two aspects of the multislice iteration in the 
Bragg case: on one hand, for ~b'(q), each iteration is 
equivalent to a Picard iteration cycle; on the other 
hand, each iteration makes a constant increment in 
phase exp (iaAy) to the wave function. The input 
wave is the first trial wave function and the nth 
multislice output is the nth approximation to the 
correct result. The difference between the stationary 
wave fields of any two slices is only a constant phase 
term: exp (imady). 

The above analysis indicates that the multislice 
method, albeit used in a different context, generally 
should be able to solve RHEED problems. However, 
the problem of the edges remains. It results from 
artificially cutting off the infinite incident plane wave 
at the end of each slice because of size limitations in 
the numerical unit cell. The trick of solving the prob- 
lem is to exploit (3) and (4) again, recognizing that 
the inward moving edge in the numerical unit cell 
will not have the correct behavior, but the standing- 
wave component will. Therefore, what we can do is 
to patch the deteriorated edge region of the unit cell 
at y+ nAy by replacing it with the corresponding 
region at y which has not deteriorated, as long as it 
is multiplied by a constant phase exp (iandy). If we 
do this, we are also physically adding an additional 
part of the incident wave to the numerical solutions 
at a depth y+nAy. The physical picture of the 
numerical simulation is therefore (as n tends to 
infinity) one of an infinite incident plane wave; an 
outside (vacuum) edge which never reaches the sur- 
face if the patching is done correctly; an inner (near 
the surface) edge which will vanish at large depths; 
the vacuum Bragg reflected waves; and the crystal 
Bloch waves which will exactly match the true wave 
field over a limited region for a semi-infinite system. 
Physically, the patched region plays the role of an 
infinite plane-wave source in a finite numerical unit 
cell. The trick here is that the wave front of the Bragg 
reflected waves always moves away from the crystal, 
while only the wave front of the incident plane wave 
moves towards the crystal. This means that any other 
reflected-wave components in the not-deteriorated 
edge region at y have no effect on the stationary 
solution at y + nay in the region close to the surface 
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which we are searching for. Therefore, as long as we 
have the incident plane-wave component not 
deteriorated in the region at y and preserve the phase 
continuity of the incident plane wave for each patch- 
ing, the iteration can be carried out to infinity. In 
other words, the edge-patching method will also work 
for a simple plane wave as a trial function. This 
procedure is illustrated in Fig. 1. 

To implement this, we have used a standard rec- 
tangular unit cell in the multislice calculations, with 
the phase term a numerically calculated (an analyti- 
cal method would presumably do as well). The 
maximum iteration number n at which the patching 
should be done is calculated according to the rate of 
the edge deterioration which primarily depends upon 
two parameters: incident angle (0o) and slice thick- 
ness (Ay). The patching has been implemented on 
the left outer part of the unit cell (0 < z < 0.25, where 
z is normal to the surface, i.e. from A to B in Fig. 1) 
with the crystal located in the region 0.75 < z < 1.0 
(from C to D in Fig. 1). We have tested the approach 
with both a simple top-hat plane wave as the first 
trial solution and with the results of a Bloch-wave 
calculation as the input wave for the Au(001) surface 
in the [010] zone: the results stabilize in both cases 
but the better the initial guess is, clearly the faster 
the convergence of the method will be. 

The key test of the method is whether a stationary 
solution is reached and in the subsequent section 
examples will be shown. 

Inward moving surface ~ Incident beam 

\ \  

D O S l ~  . . . . .  
- _- 

t~ . . . .  

Fig. 1. Schematic diagram of the beam geometry of RHEED and 
the numerical treatment of the edge-patching method. The 
numerical unit cell is located from A to D. The arrows indicate 
the inward-moving edge. The surface is at C. The range from C 
to D contains the crystal. The patched-edge region is located 
from A to B and the stationary solution is obtained in the region 
from B to D. 

III. Results 

As an example of the method, Fig. 2 shows a com- 
parison of the results for the patching with an incident 
plane wave, patching with an input Bloch-wave sol- 
ution and a simple top-hat multislice with an input 
Bloch-wave solution for the Au(001) surface in the 
[010] zone. [For details of the latter two methods see 
Ma & Marks (1989, 1990a).] The difference between 
the iteration numbers of any two nearest slices in 
Figs 2 (i)-(iii) is 100 and the slice thickness of each 
iteration Ay = 1.012~. Comparing the three: 

(a) The solution of the patching method with a 
top-hat incident wave [Fig. 2(i)] stabilizes after about 
600 •. 

(b) The solution of the patching method with an 
input Bloch wave [Fig. 2(ii)] stabilizes faster as 
expected. 

(c) The right part of the solution of a simple top- 
hat multislice with an input Bloch-wave solution [Fig. 
2(iii)] matches the corresponding stable regions of 
Figs. 2(i), (ii), although if the multislice iterates fur- 
ther, it will be completely deteriorated. 

(d) The Bloch-wave solution in the first slice of 
Figs. 2(ii) or (iii) here is close to the final solution. 

For completeness, it should be mentioned that the 
Bloch-wave solutions were terminated exactly half- 
way between the atoms. 

A more complicated example is shown in Figs. 
3(i),(ii), an artificial 2× 1 reconstruction of the 
Au(001) surface. In this case one can see the expected 
changes in the Bioch-wave solution due to the 
different surface-termination structure. Fig. 3(ii) 
shows the RHEED patterns corresponding to Fig. 
3(i). They are Fourier transforms of the vacuum waves 
excluding the patched area in the slices in Fig. 3(i). 
The reconstruction spots occur in those stabilized 
patterns. 

The final most interesting and probably most con- 
troversial result is for the Au(110) surface in the [ l l0] 
zone and is shown in Fig. 4. What is clear from this 
result is that the initial Bloch-wave solution is not a 
good guess of the true solution. As shown by a com- 
parison between the two RHEED patterns, owing to 
the initial Bloch-wave solution and final patched sol- 
ution in Fig. 5, the Bloch-wave form does not contain 
any of the bulk forbidden spots but the final form 
does and the Bloch-wave form contains the surface 
forbidden spots but the final form does not. We will 
discuss this in more detail below. 

IV. Discussion 

The Bloch-wave approach that we proposed in pre- 
vious papers (Ma & Marks, 1989, 1990a, b) appears 
to be working very well for the Au(001) surface in 
the [010] zone (Fig. 2), but it seems wrong for the 
Au(l l0)  surface in the [ l l0]  zone (Fig. 4). 
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Fig. 2. (i) Wave fields calculated using the edge-patching method with an incident plane wave. (ii) Wave fields calculated using the 
edge-patching method with an input Bloch-wave solution. (iii) Wave fields calculated by a simple top-hat multislice with an input 
Bloch-wave solution. All these calculations are for the Au(001) surface in the [010] zone. The incident angle is 30 mrad and absorption 
10%. The incident electron energy is 100 keV. The series of slice numbers for (i)-(iii) is: 1,100, 300, 600, 900, 1000, 1100, 1200, 1300, 
1500, 1700, 2050. The thickness of each iteration Ay is 1"012 ,~. 
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Fig. 3. (i) Wave fields calculated for the 2 x 1 Au(001) surface in the [010] zone using the edge-patching method. The series of  output 
slice numbers is: 1,100, 200, 300, 400, 500, 600, 700, 800, 900, 1100, 1300, 1500, 1700, 2050. The rest of  the conditions are the same 
as for Fig. 2. (ii) RHEED patterns corresponding to (i). They are Fourier transforms of the vacuum wave excluding the patched 
areas, which are shown in the range from B to C in Fig. 1. 
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First, let us consider the symmetry of the electron 
wave function generated by the Bloch-wave method 
with matching on a plane, which is the symmetry of 
the primitive unit cell. However, owing to the surface 
termination the real physical system has the lower 
symmetry of the complete unit cell. The Bloch-wave 
solution within the crystal is exact for the bulk 
material and there is no way that we can force 
eigensolutions with the complete unit-cell symmetry, 
even if you reduce the matrix from the more complete 
form that we have used to the smaller set as suggested 
by Kambe (1988); the solutions can only have the 
symmetry of the primitive unit cell. Since the form 
of the wave solution outside the crystal is exact, that 
inside is also exact, the only area open to question 
is the matching of the two at the surface. The conven- 

tional approach of a plane surface for the matching 
is obviously reasonable, but is it correct? 

The correct way of surface matching should satisfy 
not only the basic requirement of quantum 
mechanics, continuity along a boundary of both the 
wave function and its derivative normal to the boun- 
dary, but also the condition of a minimum artificial 
potential discontinuity. If ~ ( r )  is the wave inside the 
crystal, @(r) the wave outside, then for the matching 
surface s with a normal vector n we have 

• ( r )=  x/'(r)l~=s (5) 

n.  V [ ~ ( r ) -  ~ ( r ) ] [ r = s =  O. (6) 

There are a vast number of different surfaces which 
can be chosen as matching surfaces on which these 

Y 

X 

Fig. 4. Wave fields calculated for the Au(110) surface 
in the [110] zone with a top-hat Bloch-wave input. 
The rest of  the conditions are the same as for Fig. 
2. The first slice shows the Bloch-wave solution 
and the last three slices show stabilized multislice 
solutions with the edge-patching method. 

Fig. 5. R H E E D  patterns corresponding to Fig. 4. The 
incident spot in each pattern is masked, therefore the first 
three patterns (a)-(c) do not show any spot since the 
reflection is weak at the beginning of the iteration. 
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boundary conditions are imposed, but the one of 
interest should be the one with the minimum potential 
discontinuity. It can be shown that it should satisfy 
the following condition (Appendix I): 

n .  VV(r)l,=s-- 0. (7) 

For the Au(001) surface in the [010] zone, a plane 
boundary between the atoms automatically satisfies 
(7) because it has the maximum potential (close to 
zero) along the surface normal n, see Fig. 6, and the 
change in the Bloch-wave solution with iteration cycle 
is the accommodation of this small potential discon- 
tinuity. However, for the Au(110) surface in the [110] 
zone, (7) cannot be satisfied by a simple plane surface 
and the imposed potential discontinuity will be sub- 
stantial (Fig. 6). This discontinuity is responsible for 
the large deviations in Fig. 4. As outlined in Appendix 
II, it is necessary and also possible to modify the 
Bloch-wave boundary conditions by taking a non- 
planar surface for the boundary match. 

An important point that should be mentioned is 
that the boundary-match issue herein may also be 
relevant to transmission surface imaging in plan view; 
certainly one can easily see that it will affect Bloch- 
wave calculations of surface step contrast in plan 
view where the same issues will arise. This merits 
further exploration, although we should note that the 
importance of the effect will fall as the wave vector 
normal to the surface increases and will therefore 
presumably be far smaller. 

$ planar surface 

Let us now discuss the patching approach. For 
completeness, it should be mentioned that the idea 
of edge patching is simple and the initial ideas of a 
self-consistent RHEED solution have been discussed 
earlier (Cowley, Marks & Spence, unpublished; 
Howie & Marks, unpublished). What is significant 
from these results is that the edge-patching method 
for reaching a self-consistent RHEED solution does 
appear to work very well and can be applied (com- 
puter time permitting) to any surfaces. What remains 
is of course the worrying question of how well it 
matches experiments and how perfect experimental 
results are. 

This work was supported by the National Science 
Foundation, grant nos. DMR 85-20280 and DMR 
87-17376. 

APPENDIX I 

We will prove here that (7) in the text corresponds 
to the best matching surface for the Bloch-wave 
method. Let V(r) be a truncated Bloch potential and 
V'(r) be the true potential. The difference between 
the two is a perturbation potential which will intro- 
duce additional scattering which is not included in 
the Bloch-wave solution. To minimize this perturba- 
tion, we want to minimize the first (and higher) per- 
turbation term, which is equivalent to minimizing 

J, planar surface 

[010] zone y [170] zone 

x 
(a) (b) 

Fig. 6. Diagrams of the projected crystal potential of Au along the [010] (a) and [130] (b) zones. The white lines are the intersections 
of equal potential surfaces with the zone plane. 
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(Born approximat ion)  

{ V ( r ) -  V'(r)} exp (2~'iq. r )dr  ( I - l )  

where the integration range is restricted to outside 
the crystal and q is the momentum change. With the 
potentials as sums of atomic potentials (i.e. ignoring 
surface potentials a l though this does not affect the 
final result), 

where 

V(r) : Z v ( r -  r , )A(r)  (I-2) 
r l  

10 for r inside the crystal 
A(r) = outside (I-3) 

V'(r) = ~ v ( r -  r,)B(r~) (I-4) 
r i  

where 

{ 1 
B(r,) = 0 

for an atom posit ion inside the crystal 

outside. (I-5) 

v here denotes atomic potentials.  With the calculus 
of variation methods,  let A(r) go to A(r) + ag( r )  [g(r)  
defined similarly to A(r)]  and take the derivative with 
respect to a for the best surface, i.e. 

lim O/Oa[. ~ v (r - r i ) {[A(r )+ a g ( r ) ] -  B(r,)} = 0  (I-6) 
ot --) 0 If I 

~ 6 ( r - s ) g ( r ) n .  V ~  v ( r - r , ) d r =  0 (I-7) 

where n is the vector normal to A(r) and s defines 
the surface, as used in the main text. Since this must 
be true for all g(r),  it follows that 

n .  VV(s) = 0. (I-8) 

If there is no external surface potential outside the 
crystal, then the addi t ional  condit ion V(s) = 0 makes 
the per turbat ions vanish to all orders and the Bloch- 
wave solution is therefore exact. 

A P P E N D I X  II 

The planar-surface matching can actually be replaced 
by a periodic non-planar-surface matching, which is 
numerical ly feasible. Here, we give an analytical deri- 
vation. For the planar-surface matching, s has the 
form z = 0 and then we have 

q~('r, z ) =  ~(7-, z) (II-1) 

O~(r, z)/Oz = 0~( ' r ,  z)/Ozl,=¢x.y).:=o (II-2) 

where @ is the wave function outside a crystal, qt 
the wave function inside, the surface is set in the xy 
plane and the surface normal  is parallel to the z axis. 
For a periodic non-planar-surface matching, s has the 

form z = f ( x ,  y) and then we have 

q~(r, z ) =  qr(r, z) (II-3) 

oclJ(r, z ) /Oz=O~(r ,  z)/Oz[~=(,,.y).z=y(,,.y) (II-4) 

where f ( x , y )  is a 2D periodic function and its 
approximate  form can be easily derived. Both (II-3) 
and (II-4) can be expanded  as Fourier series: 

Z ( 6g'O' + Rg,) exp [ i2 ~'(ko,, + g',). "r] 
g '  

x exp [ i2"rr( ko_-, + g'z)f(x, y)]  

= ~  e~J)~ C (~) exp [ i2 r r (ko ,+g , )  'r] ~ g  • 

J g 

x exp [i27r( v<j)+,-oz g~)f(x, y)]  (II-5) 

Z ( kor + g~,)(Sg,o, + Rg,) exp [ i2 rr(ko,, + g',). "r] 
g '  

x exp [ i2rr(ko._ + g'.)f(x,  y)]  

- .-z Cu) exp [i2rr(ko, +g , )  "r] - Z etJ' ~ ( k(J) + gz)vg 
i g 

x e x p  [i27r(v(J)+,,.o~ gz)f(x ,  y)]  (II-6) 

where C ~) is the coefficient of a plane-wave com- ~ g  

ponent  g of  a Bloch wave j, e ~j) excitation coefficients 
of  the Bloch wave j, Rg, the coefficient of  a Bragg- 
reflected wave g' and 6 is Kronecker 's  delta function. 

The exponential  terms with f ( x ,  y) in (II-5) and 
(II-6) can be further expanded  as Fourier  series, since 
f ( x ,  y) is a 2D periodic function: 

exp [i2rr(koz,+ g ' ) f ( x ,  y)]  

=~ %,,h, exp[i27r(ko,,+h',).'r] (II-7) 
h '  

exp [ i27r( VtJ) + g~)f ( Y)] 

- y~ n(J) exp[i2rr(ko, +h , )  x] (II-8) - -  / - '  g , h  
h 

w h e r e  O~g, ,h ,  and a(J) ~g.h can be calculated numerically.  
Substituting (II-7) and (II-8) into (~II-5) and (II-6) 
and letting g '+  h ' =  !' and g +  h = 1, ~ve obtain 

ko,, = ko, (II-9) 

~t = E e(J)AIJ) (II-10) 
J 

koz'¢, = Z e(J)Bl j) 
J 

where 

(II-11) 

so, = • (6g,o,+ Rg,)ag,.,_g, (II-12) 
g '  

ko..,~=~ (koz,+g'z)(6g,o,+ Rg,)ag,.~_g, (II-13) 
g' 

A(iJ ) = ~ t " ( J ) a ( J )  (II-14) ".-~ g /~  g , l - g  
g 

BIJ,  = (k(/,+_ g~J~g og,l-g, (II-15) 
g 
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e °) and sc~ can be solved by (II-10) and (II-11) and 
then Rg, can be solved by (II-12). Although the pro- 
cess as shown here is harder than that for the planar- 
surface matching, the 2D periodic non-planar-surface 
matching in principle can be done. In other words, 
the Bloch-wave method can also be applied to all 
kinds of periodic planar- or non-planar-surface 
models. 
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Abstract 

A new iteration method for direct structure retrieval 
starting from the exit plane-wave function qte(r) is 
proposed and tested on models. The imaginary part 
of the potential cannot be retrieved. The effects of 
the limited resolution of qt~(r) as well as neglect of 
high-order Laue-zone effects and the choice of the 
starting potential on the result are discussed. The 
procedure is found to be preferable to that based on 
the subsequent approximation method with respect 
to a higher convergence rate. It is shown that an error 
as low as 10% may be obtained for the real part of 
the retrieved potential up to IcrV(r)tl < 5. 

1. Introduction 

As is well known, the image-formation process in 
high-resolution electron microscopy (HREM) is 
influenced by dynamical scattering effects and distor- 
tions caused by the electron-optical system of the 
microscope. Therefore the image interpretation is 
mostly based on results of computer simulation. If 
the initial structure motif is known (from X-ray analy- 
sis data, for example) or a structure is postulated, the 
matching procedure allows one to refine both the 

* Now on leave: Department of Physics, Arizona State Univer- 
sity, Tempe, AZ 85287-1504, USA. 

structural details and the experimental conditions 
under which the image has been obtained and to 
interpret the images of structure defects as well. 

We should point out some disadvantages of this 
approach. Firstly, the trial-and-error nature of the 
simulation process leads to considerable expense of 
computer time and depends on the experience of the 
researcher. Secondly, it cannot be applied to the 
investigation of unknown structures. 

The elaboration of direct structure-restoration 
methods seems to be attractive in this respect. The 
problem may be treated as consisting of two parts: 

(a) correction for the transfer function of the 
microscope, i.e. restoration of the wave function at 
the exit plane of a crystal from the EM image(s); 

(b) inversion of the dynamical diffraction, i.e. 
restoration of the lattice potential Ve(r) from the exit 
plane wave function. 

The dynamical scattering effects and the influence 
of the electron-optical system are therefore con- 
sidered separately and this makes it possible to find 
independently the most efficient method for the sol- 
ution of each problem. 

Approaches aimed at restoration from the exit 
plane wave function include defocus series processing 
and transmission electron microscopy/scanning 
transmission electron microscopy (TEM/STEM) 
electron holography. Non-linear image processing 
methods have been suggested by Kirkland (1982, 
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