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Table 1. Maximum reduced rotation angles, longest Rodrigues vectors, restrictions for Rodrigues vectors and 
range of rotation axes for any combination of two symmetries 

M a x i m u m  r e d u c e d  
La t t i ce  s y m m e t r i e s  r o t a t i o n  ang le  L o n g e s t  R o d r i g u e s  v e c t o r  

Cubic 62.80 (2 I/2 - l, 2 I/2 - 1,3 - 2 x 2 I/2 ) 
Hexagonal 93.84 [(3 i/2 _ 1), (3 I/2 - 1 ), (2 - 3 t/-~ )] 

Tetragonal 98.42 [ 1, (21/2 - 1 ), (2 I/2 - 1 )] 

Orthorhornbic 120 ( 1, 1, 1 ) 
Cubic-cubic 62.80 (2 I / 2 -  I, 21/2- I, 3 -  2 x 2 w2) 

Hexagonal-hexagonal  93.84 [(31/2 - 1 ), (3 t/2 - 1 ), (2 - 31/2)] 
Tetragonal-tetragonal 98-42 [ 1, (2 I/2 - 1 ), (2 I/2 - 1 )] 

Orthorhombic-or thorhombic 120 ( 1, 1, 1 ) 
Cubic-hexagonal  56.60 ( xo, x6, x4) 
Cubic-tetragonal  62.80 (21/2 - 1,2 I/2 - 1, 3 - 2 × 2 t/2) 

Cubic-or thorhombic 62.80 (2 t/2 - 1, 2 */2 - 1, 3 - 2 x 2 I/2 ) 

Hexagonal-tetragonal  90.98 ( I, x4, x4) 
Hexagonal-or thorhombic 93.84 
Tetragonal-orthorhombic 98.42 

R e s t r i c t i o n s / r a n g e  o f  r o t a t i o n  axes  

None / R ~ 
None / R 3 

None / R 3 
None / R 3 

d I>d 2:>d 3 ~ 0 / c u b i c S s T *  
d~ >- O, (l/3W2)dt -> d 2 e 0 / hexagonal SST* 

d 3 ;~ 0, d~ -> d 2 -> 0 / tetragonal SST* 
d, ~ 0, i = 1, 2, 3 / orthorhombic SST* 

see § 8 / I + 2 octant of R 3 = double orthorhombic SST* 
1/8 of c u b i c / d o u b l e d  tetragonal SST* 

1/4 of cubic-cubic / doubled orthorhombic SST* 
see § 1 0 / d o u b l e d  orthorhombic SST* 

[(31/2 - 1), (31/2 - 1), (2 -31/2)]  1/4 of hexagonal-hexagonal  / doubled orthorhombic SST* 
[ 1. (2 t/2 - 1 ), (2 I/2 - 1 )] 1/4 of tetragonal-tetragonal / doubled orthorhombic SST* 

x o = (2 t/2 - 1 ), x 4 = (2 × 2 I/2 - 3 I/2 - I )/(3 I/2 - 1 ) and x 6 = (2 ~/2 - 3 I/2 - 6 w2 + 3)/(3 ' /" - 1 ). 

* SST = standard stereographic triangle. 
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Abstract 

Dynamical calculations of reflection high-energy 
electron diffraction (RHEED) from the 2 × 1 missing 
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Os lo  3, N o r w a y .  
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row reconstruction of the Au( l l0 )  surface have been 
simulated as a function of surface-atom relaxation at 
different incident glancing angles using the multislice 
approach with the edge-patching method. The results 
demonstrate that the diffracted-beam intensity is 
extremely sensitive to the surface structure; small 
surface relaxations lead to large amplitude changes, 
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which is consistent with similar claims by previous 
authors using different methods. The high surface 
sensitivity of RHEED indicates that it can be used 
to fingerprint surface relaxations if a reliable simula- 
tion tool is available. 

I. Introduction 

Surface structures, for either clean or adsorbed sur- 
faces, have been mainly investigated by low-energy 
electron diffraction (LEED). On the other hand, sur- 
face structure information has also been successfully 
obtained using the diffraction of high-energy elec- 
trons at glancing incidence (RHEED) in several cases 
(Menadue,  1972; Ino, 1977, 1980; Gotoh & Ino, 1978). 
In recent years more attention has been given to 
RHEED with its successful application to layer-by- 
layer crystal growth control in molecular beam epi- 
taxy (MBE) facilities (Neave & Joyce, 1983; Van 
Hove, Lent, Pukite & Cohen, 1983). 

Fast electrons in reflection geometry interact 
mainly with the nucleus of surface atoms, whereas 
the slow electrons used in LEED interact with both 
the nucleus and the electrons of surface atoms. It is 
therefore evident that RHEED intensities are sensi- 
tive to surface structures and can be interpreted more 
readily than LEED. It is especially true for the investi- 
gation of surface relaxations which are normal to 
both the surface and the incident beam in RHEED 
geometry. 

In the theoretical development of RHEED, Collela 
(1972) and Moon (1972) first extended the n-beam 
Block-wave dynamical calculation to RHEED prob- 
lems. Later it was applied to interpret RHEED 
intensities from the Si(001) surface by Britze & Meyer- 
Ehmsen (1978) and the effects of surface contraction 
(or negative relaxation) of the Si(001) surface on 
RHEED intensities were discussed. Maksym & Beeby 
(1981) derived a slice method for RHEED problems 
in which the crystal was sliced parallel to the surface. 
The results showed that RHEED intensities were 
sensitive to surface contractions of 5 to 10% in the 
topmost layer on the Ag(001) surface. A different 
multislice approach due to Cowley & Moodie (1957, 
1959) was applied to RHEED problems by Peng & 
Cowley (1986), in which the crystal was sliced normal 
to the surface and incident beam. 

Previously, RHEED intensities were found (Ma, 
1990; Ma & Marks, 1990a, 1991) to be highly sensitive 
to the surface termination, i.e. the surface potential 
modulation normal to the surface and incident beam. 
This has raised a boundary-matching problem in the 
n-beam Bloch-wave method (Ma & Marks, 1991). 
This also implicitly requires the potential sampling 
rate normal to the surface and the incident beam to 
be significantly increased in the method of slicing the 
crystal parallel to the surface and incident beam, 
otherwise the solution may not be correct (Ma, 

1990a, b; Ma & Marks, 1991). The multislice 
approach (slicing normal to the surface and the 
incident beam) is a powerful technique for RHEED 
simulations due to the proliferation of multislice pro- 
grams and the high sampling rate in the plane normal 
to the surface and the incident beam. The edge effects 
of the method, which prevent the method from obtain- 
ing a stationary solution, have been overcome by 
using the edge-patching method (Ma, 1991; Ma & 
Marks, 1990a, 1991). The current paper seeks to 
demonstrate that the multislice approach with edge 
patching can be used for solving one of various 
RHEED problems, determining surface relaxation 
using the RHEED technique. The missing row recon- 
struction of gold, A u ( l l 0 ) - 2 ×  1, was simulated as a 
function of the relaxation of reconstructed surface 
atoms at different incident angles. The results show 
again that RHEED is highly sensitive to surface 
relaxations. The different diffracted beams in the 
resulting RH EED patterns exhibited widely disparate 
intensity behavior, thus suggesting that surface 
relaxations or, more generally, all other surface struc- 
tures may well be identified by these distinguishable 
RHEED patterns. 

II. Numerical  method 

The multi'slice approach with edge patching has been 
discussed in detail elsewhere (Ma, 1991; Ma & Marks, 
1991). The method of simulating surface reconstruc- 
tions in the framework of the multislice method has 
been presented previously (Ma & Marks, 1990b). Fig. 
l ( a )  shows the complete unit cell with size 4x  21/2a × 
2a for the multislice calculation (where a denotes 
the magnitude of the primitive unit-cell vector of 
gold). The cell is comprised of 3 vacuum (from A to 
B) and ~ crystal (from B to C). The 1D profile of 
the crystal potential for the Au( l l0 )  surface in the 
[ l i 0 ]  zone is shown in Fig. l (b) .  For the 2 x 1 recon- 
struction, the unit cell needs to be two times larger 
than the primitive vector along (001) and the recon- 
structed surface atom is positioned as shown in the 
diagram (Fig. 1 a). The high-energy electron reflection 
from the Au(110)-2 x 1 reconstruction was simulated 

l 

i . . . .  

(a) 

(b) 

o-  SOoOa T 
• °1o°o°o°~ o~_o_o°s. ~ 

Fig. 1. Diagrams of the complete unit cell with the size 4x 21/2a x 
2a for (a) the multislice calculation and (b) the ID potential 
profile for the Au(ll0) surface in the [li0] zone. 
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under conditions of 50 keV electrons incident upon 
the (110) surface at 25 and 50 mrad glancing angles 
to [130] and zero azimuth with respect to the (001) 
plane. The coordination axes are assigned as the 
following: x [001]; y [110]; z [ l l0 ] ;  and the incident 
beam is along the y axis (Fig. 1). Crystal absorption 
has been taken into account in all subsequent simula- 
tions by taking the imaginary component of the crystal 
potential as 10% of its real component. The outermost 
surface reconstructed atoms in the simulation were 
relaxed normal to (110) for both expansion ('positive 
relaxation') and contraction ('negative relaxation') 
cases. The relaxation of the topmost reconstructed 
atoms is defined as the percentage of their corre- 
sponding coordinates in the bulk along (110). The 
calculations were conducted on an Apollo 3500 com- 
puter equipped with a Mercury array processor and 
were imaged by means of the NUMIS and SEM- 
PERVI routines available at Northwestern Univer- 
sity. The stationary solution of the reflected wave was 
achieved after 1000 iterations of the multislice 
routines for 25 mrad incidence. The thickness of each 
iteration Ay is 1.442 A. Although the calculations for 
higher glancing angles converged faster than lower 
angles, 1000 iterations were used in both 25 and 
50 mrad incidences for consistency. The RHEED pat- 
terns were analyzed for their intensity distributions 
with a fixed aperture size and all beam maxima were 
normalized to the incident-beam intensity for 
comparison. 

III. Results and discussions 

Fig. 2 illustrates the wave intensity outputs for 
50 mrad incidence and 0% relaxation at different 

thicknesses. The output series are: 1, 100, 200, 300, 
400, 500, 600, 800, 1000, 1200 and the total iteration 
thickness is about 1730/~. As it indicates, the wave 
field converges to a stationary solution after about 
1000 iterations. The wave field in the crystal (from B 
to C) decays to zero because of crystal absorption 
and wave extinction. The periodic boundary condi- 
tions imposed by the multislice approach have little 
effect on the solution because of the wave damping 
and the zero field imposed at the two ends of the unit 
cell (A and C). Fig. 3 shows the RHEED patterns at 
25 mrad to the [110] for three different relaxations 
normal to the (110) surface: -10% (inward or contrac- 
tion) (a),  0% (b) and +10% (outward or expansion) 
(c), with respect to the bulk positions of those topmost 
reconstructed atoms. These patterns were obtained 
by the Fourier transform of the vacuum waves (from 
A to B) excluding the edge-patching area. Note that 
the transmitted incident beam is saturated for a 
clearer display of the Bragg reflections (the ratio 
between the two is about 103-104). Experimentally, 
the transmitted beam is cut off by the edge of the 
crystal specimen. One can easily notice that different 
surface relaxations result in dramatic changes in 
diffracted-beam intensity. For quantitative analysis, 
the normalized amplitude of each beam is plotted as 
a function of surface relaxation in Fig. 4 for 25 mrad 
incidence. Fig. 4(a) is the plot of behavior of the bulk 
diffracted beams. Here, the (0, 1) and (0, 2) beams 
correspond to the {hhl} and {hh2} reflection rods, 
respectively. While the (0, 1) beam has large intensity 
variations with relaxation, the (0,2) beam is only 
slowly oscillatory. It should be noted that the 
specularly reflected beam, (0, 0), exhibits behavior 
similar to the (0, 1) on an even larger scale. Fig. 4(b) 

y 

X 

A 

Ii F 
B C A B C 

/I 

Fig. 2. Wave intensity outputs for 50 mrad incidence and 0% relaxation at different thicknesses. The output series is: 1, 100, 200, 300, 
400, 500, 600, 800, 1000, 1200 and the total thickness of the iteration (1200Ay) is 1730/~. The incident energy is 50 keV and the 
crystal absorption is 10%. 
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plots the amplitude oscillations of the beams due to 
the reconstructed surface as a function of relaxation. 
Again, while the (0,1) beam exhibits large fluctuations 
in amplitude, the (0, 1½) beam varies only slowly. Fig. 

(a) 

5(a) plots the behavior of the (0, 0) and (0, 1) beams 
while Fig. 5(b) depicts the (0, 2) and (0, 3) beams for 
50 mrad incidence. Here, the (0, 3) beam corresponds 
to the {hh3} reflection rods. One rather interesting 
feature of these plots is that while all four beams 
exhibit oscillatory behavior, the (0,0) and (0, 1) 
beams seem to be 'out of phase' and the (0, 2) and 
(0, 3) beams oscillate 'in phase'. Similar results are 
found for the reconstructed surface beams, i.e. Figs. 
5(c) and (d), where (0, ½) and (0, 1½) beams are 'in 
phase' while (0, 2½) and (0, 3½) beams have suffered 
a phase shift in oscillation. Here, we have seen an 
interesting physical phenomenon; the surface recon- 
structed atoms are redistributing the intensities of the 
bulk reflection beams and modulating the intensities 
of all reflection beams as a function of their relaxation 
distance normal to the surface. The fact that the 
intensities of RHEED patterns are highly sensitive to 
the relaxation distance of the topmost atomic surface 
layer itself indicates that any RHEED calculation 
must take small-scale potential modulations normal 
to the surface and the incident beam into account. In 
other words, it must have a high potential sampling 
rate normal to the surface which should be less than 
1% of the distance between the nearest neighbors in 
the bulk. This may make any method of slicing crystals 

(b) 

x 
10 

< 

Au( 110)-2xl : 25 m r a d  

0 
20 lO o 10 20 

Rela ~,:,,ion ( c~ ) 

(a) 

(c) 

Fig. 3. RHEED patterns at 25 mrad to [ l i0]  for three different 
relaxations normal to the (110) surface: (a) -10%, (b) 0% and 
(c) +10%. These are the Fourier transforms of the vacuum waves 
(from A to B indicated in Fig. 1) excluding the edge-patching 
area. 

40 

30 

20 

10 

0 

A u ( l l 0 ) - 2 x l :  2 5 m r a d  

- 2 0  lO 0 lO 20 
Relaxalion (%) 

(b) 

Fig. 4. Plots of the beam amplitude v s  relaxation for the bulk 
diffracted beams (a) (0, 1) and (0,2) and (b) reconstruction 
beams (0, t) and (0, 1½) for 25 mrad incidence. The data were fit 
with third-order polynomials. 
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\ 

2O 
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Rclaxal iol l  IC21 

(c) 

parallel to the surface in RHEED calculations intract- 
able both numerically and economically. 

It is important to realize at this point that, while 
the diffracted beams vary in intensity, the overall 
intensity remains a constant due to the conservation 
of energy or current flow. Also the amplitude vari- 
ations in Figs. 4 and 5 were fitted with nth-order 
polynomials to demonstrate the functional trends of 
the intensity variations of different reflected beams. 
Ideally, a larger number of surface relaxations should 
have been simulated to 'fill in' the data; however, in 
the interest of time this was not done (the use of a 
supercomputer can expedite the calculations) and the 
RHEED patterns presented here clearly demonstrate 
the dramatic intensity variations for small values of 
surface relaxation. 

As a summary, it should be pointed out that the 
simulation of surface reconstructions by means of the 
edge-patching method in the framework of the multi- 
slice approach due to Cowley & Moodie (1957, 1959) 
has shown the possibility of analyzing not only the 
geometrical spot positions in RHEED patterns but 
also detailed intensity information. Although we have 
only conducted the calculation on reconstruction 
relaxation, the results have demonstrated the ability 
of the method to calculate a variety of surface struc- 
tures, which allows more complicated RHEED pat- 
terns to be interpreted in a more quantitative way. 
The dramatic changes in intensity indicate that, in 
addition to identifying surface reconstructions, the 
relaxations of individual atoms can be discerned, i.e. 
each surface and surface reconstruction has its own 
distinct characteristics different from the others. 
While the A u ( l l 0 ) - 2 x l  reconstruction was only 
treated theoretically here, and has not yet been experi- 
mentally verified, the salient point is that it is now 
possible to calculate the RHEED patterns and iden- 
tify reconstructions and relaxations from more com- 
plicated surfaces. 

4 

2 

0 
20 

Au( I I 0)-2x I : 50 mrad 

10 0 10 
Rela~,:ltiun q % l 

(d) 

Fig. 5. Plots of the beam amplitude vs relaxation for the bulk 
diffracted beams (a) (0,0) and (0, 1), (b) (0,2) and (0,3) and 
reconstruction beams (c) (0,½) and (0, 1½), (d) (0, 2½) and (0, 3½) 
for 50 mrad incidence. The data were fit with fifth-order poly- 
nomials. 
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Abstract 

Different sources of error in single isomorphous 
replacement (SIR) maps are analysed. It is shown 
that SIR maps are good enough in themselves to 
localize a molecule but the absence of low-resolution 
reflections can distort the image of the molecule. Even 
in this case the molecule can be reliably localized 
using the double-step filtration technique of 
Urzhumtsev, Lunin & Luzyanina [Acta Cryst. (1989), 
A45, 34-39] if parameters are chosen appropriately. 
On the other hand, such syntheses may be consider- 
ably improved by addition of low-resolution structure 
factors. A very simple procedure is suggested to 
retrieve unknown phases for these structure factors. 

I. Introduction 

At the beginning of a macromolecular structure deter- 
mination, electron density syntheses may be so noisy 
that the molecules cannot be localized. Different 
sources of errors influence synthesis distortions. Some 
of them have recently been analysed by Fenderson, 
Herriott & Adman (1990). In our work we have ana- 
lysed the influence of some other sources of synthesis 
errors: using isomorphous replacement phases 
instead of the exact values and lack of very low- 
resolution reflections in the synthesis (loss of the 
central zone of reciprocal space). 

Earlier, Podjarny, Schevitz & Sigler (1981) and 
Luzzatti, Mariani & Delacroix (1988) noted the sig- 
nificance of low-resolution phases. Now we have 
succeeded in both qualitative and quantitative estima- 
tion of the effect of these omitted reflections. This 
omission was shown to be the main cause of molecular 
image distortion. Unfortunately, determination of the 
corresponding phases by the isomorphous replace- 
ment method is problematic, in particular because of 
the well known disordered solvent contribution. 

0108-7673/91/060794-08503.00 

When molecule boundaries can be found, the 
powerful solvent-flattening procedure (Bricogne, 
1974) may be used to improve the synthesis. To 
localize a molecule in a very noisy synthesis, similar 
procedures were independently developed by Stuart 
(1988), Urzhumtsev (1985), Wang (1985) and West- 
brook (see, Podjarny, Moras, Navaza & Alzari, 1988). 
The most popular of these approaches is the Wang 
(1985) procedure. This was successfully inserted into 
the general density-modification scheme (Podjarny, 
1987) which was used from the beginnings of protein 
crystallography (see e.g. Qurashi, 1953). 

There is a widespread point of view that the basis 
of the Wang procedure is a local averaging of a noisy 
synthesis. However, as was shown by Urzhumtsev et 
al. (1989), the averaging by itself does not produce 
molecule boundaries and the key point is the pre- 
liminary nonlinear filtration of the synthesis. In the 
Wang procedure this step is carried out indirectly by 
calculating the synthesis without Fooo/V and remov- 
ing negative density. Wang has not paid due attention 
to this step although the results for molecular boun- 
daries depend on its parameters (Urzhumsev et al., 
1989). We have demonstrated that the appropriate 
choice of parameters for both nonlinear filtration and 
averaging enables one to localize the molecule even 
in a very noisy synthesis, in particular, one calculated 
without low-resolution reflections. 

When low-resolution reflections are unphased the 
synthesis may also be improved by phase extension 
to the low-resolution region which is the exact 
opposite to the usual phase extension to high-resol- 
ution reflections. Some authors working with viruses 
structures in particular include these reflections in 
synthesis calculations, obtaining the phases from a 
model (e.g. Harrison & Jack, 1975). This situation 
differs from the one discussed here where a model is 
absent but more high-resolution phases are known, 
maybe with some errors. Earlier, Podjarny et al. 
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